Abstract

Dynamic characteristics of semiconductor optical amplifiers (SOAs) with certain facet reflection in different operation conditions are theoretically investigated with a detailed wideband model. Influences of different facets reflectivities are numerically simulated for different lengths of active regions. The results indicate that the gain recovery time can be reduced to 50% of the initial value while the other related characteristics are optimized for appropriate facets reflections. A half reflective semiconductor optical amplifier (HR-SOA) with a cleaved facet on rear facet and an antireflection coating on front facet can speed up the gain recovery with easy realization and low cost. The related characteristics of this structure are evaluated. It’s also indicated that the gain recovery has further potential to be reduced as low as twenties picoseconds for a long active region.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
    [CrossRef]
  2. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996).
    [CrossRef]
  3. R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
    [CrossRef]
  4. P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994).
    [CrossRef]
  5. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
    [CrossRef]
  6. H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
    [CrossRef]
  7. S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
    [CrossRef]
  8. M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
    [CrossRef]
  9. G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
    [CrossRef]
  10. A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
    [CrossRef]
  11. A. Joon Tae, L. Jong Moo, and K. Kyong Hon, "Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission," Electron. Lett. 39, 1140-1141 (2003).
    [CrossRef]
  12. P. Jongwoon, L. Xun, and H. Wei-Ping, "Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors," IEEE J. Quantum Electron. 39, 1415-1423 (2003).
    [CrossRef]
  13. Y. Liu, E. Tangdiongga, Z. Li, Z. Shaoxian, W. Huug de, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
    [CrossRef]
  14. P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," presented at the Microwave and Optoelectronics Conference, 2001. IMOC 2001. Proceedings of the 2001 SBMO/IEEE MTT-S International, 2001.
  15. D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).
    [CrossRef]
  16. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992).
    [CrossRef]
  17. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
    [CrossRef]
  18. D-X. Wang, J. Buck, K. Brennan and I. Ferguson, "Numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers," Appl. Opt. 45, 4701-4708 (2006)
    [CrossRef] [PubMed]
  19. M. G. Davis and R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994).
    [CrossRef]
  20. A. Yariv, Optical Electronics in Modern Communications 5th ed., (Oxford University Press, New York, 1997).
  21. A. M. a. J. Mørk, "Saturation induced by picosecond pulses in semiconductor optical amplifiers " J. Opt. Soc. Am. B. 14, 761 (1997).
    [CrossRef]
  22. Y. Boucher and A. Sharaiha, "Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers," IEEE J. Quantum Electron. 36, 708-720 (2000).
    [CrossRef]

2006 (5)

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
[CrossRef]

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, Z. Shaoxian, W. Huug de, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
[CrossRef]

D-X. Wang, J. Buck, K. Brennan and I. Ferguson, "Numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers," Appl. Opt. 45, 4701-4708 (2006)
[CrossRef] [PubMed]

2003 (3)

A. Joon Tae, L. Jong Moo, and K. Kyong Hon, "Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission," Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

P. Jongwoon, L. Xun, and H. Wei-Ping, "Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors," IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
[CrossRef]

2001 (2)

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

2000 (2)

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Y. Boucher and A. Sharaiha, "Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers," IEEE J. Quantum Electron. 36, 708-720 (2000).
[CrossRef]

1997 (1)

A. M. a. J. Mørk, "Saturation induced by picosecond pulses in semiconductor optical amplifiers " J. Opt. Soc. Am. B. 14, 761 (1997).
[CrossRef]

1996 (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996).
[CrossRef]

1994 (2)

P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994).
[CrossRef]

M. G. Davis and R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994).
[CrossRef]

1992 (1)

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992).
[CrossRef]

1989 (2)

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

1983 (1)

D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).
[CrossRef]

Adams, M. J.

G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Alferov, Zh. I.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Bhardwaj, A.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Bimberg, D.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Binsma, J. J. M.

P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994).
[CrossRef]

Borri, S. S. P.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Boucher, Y.

Y. Boucher and A. Sharaiha, "Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers," IEEE J. Quantum Electron. 36, 708-720 (2000).
[CrossRef]

Brennan, K.

Bridges, T. J.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

Buck, J.

Burrus, C. A.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

Cabot, S.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Connelly, M. J.

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

Dagens, B.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Davis, M. G.

M. G. Davis and R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994).
[CrossRef]

Deveaud, B.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Dong, H.

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
[CrossRef]

Dupertuis, M. A.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992).
[CrossRef]

Dutta, N. K.

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
[CrossRef]

Eisenstein, R. S. T. G.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

Emery, J. Y.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Ferguson, I.

Hansen, P. B.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

Hessler, T. P.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Jaques, J.

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
[CrossRef]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996).
[CrossRef]

Johnson, B. C.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

Jong Moo, L.

A. Joon Tae, L. Jong Moo, and K. Kyong Hon, "Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission," Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

Jongwoon, P.

P. Jongwoon, L. Xun, and H. Wei-Ping, "Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors," IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Joon Tae, A.

A. Joon Tae, L. Jong Moo, and K. Kyong Hon, "Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission," Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

Kang, I.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Kyong Hon, K.

A. Joon Tae, L. Jong Moo, and K. Kyong Hon, "Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission," Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

Langbein, W.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Ledentsov, N. N.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Li, Z.

Liu, Y.

Lykke Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996).
[CrossRef]

Marcuse, D.

D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).
[CrossRef]

Matsumoto, A.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992).
[CrossRef]

Neilson, D. T.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Nishimura, K.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

O'Dowd, R. F.

M. G. Davis and R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Ouyang, D.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Pleumeekers, J. L.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Raybon, G.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

Sauer, N.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Selbmann, P. E.

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

Shaoxian, Z.

Sharaiha, A.

Y. Boucher and A. Sharaiha, "Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers," IEEE J. Quantum Electron. 36, 708-720 (2000).
[CrossRef]

Storz, F. G.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992).
[CrossRef]

Sun, H.

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
[CrossRef]

Talli, G.

G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
[CrossRef]

Tangdiongga, E.

Thiis, P. J. A.

P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994).
[CrossRef]

Tiemeijer, L. F.

P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994).
[CrossRef]

Usami, M.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

Ustinov, V. M.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Utaka, K.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

Van Dongen, T.

P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994).
[CrossRef]

Wang, D-X.

Wang, Q.

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
[CrossRef]

Wei-Ping, H.

P. Jongwoon, L. Xun, and H. Wei-Ping, "Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors," IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Wiesenfeld, J. M.

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

Woggon, U.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Xun, L.

P. Jongwoon, L. Xun, and H. Wei-Ping, "Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors," IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Zhang, L.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

Zhu, G.

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
[CrossRef]

Zhukov, A. E.

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989).
[CrossRef]

S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001).
[CrossRef]

Electron. Lett. (1)

A. Joon Tae, L. Jong Moo, and K. Kyong Hon, "Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission," Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

IEEE J. Quantum Electron. (9)

P. Jongwoon, L. Xun, and H. Wei-Ping, "Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors," IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003).
[CrossRef]

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006).
[CrossRef]

D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).
[CrossRef]

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

M. G. Davis and R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994).
[CrossRef]

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994).
[CrossRef]

Y. Boucher and A. Sharaiha, "Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers," IEEE J. Quantum Electron. 36, 708-720 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006).
[CrossRef]

M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).
[CrossRef]

J. Lightwave Technol. (3)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, Z. Shaoxian, W. Huug de, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
[CrossRef]

J. Opt. Soc. Am. B. (1)

A. M. a. J. Mørk, "Saturation induced by picosecond pulses in semiconductor optical amplifiers " J. Opt. Soc. Am. B. 14, 761 (1997).
[CrossRef]

Other (2)

A. Yariv, Optical Electronics in Modern Communications 5th ed., (Oxford University Press, New York, 1997).

P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," presented at the Microwave and Optoelectronics Conference, 2001. IMOC 2001. Proceedings of the 2001 SBMO/IEEE MTT-S International, 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The propagating of optical fields in the detailed wideband model for SOA

Fig. 2.
Fig. 2.

The flowchart of the algorithm for static and dynamic simulation. The dash box and dot box correspond to static and dynamic simulation respectively.

Fig. 3.
Fig. 3.

Spontaneously emitted field at front (F) and rear (R) facet with R 2 = 10-4 and R 2 = 0.3, respectively. R 1 = 10-6 for both resonant cavities.

Fig. 4.
Fig. 4.

Chip gain of probe wave at rear facet versus reflectivity for 0.5mm (open circle) and 1mm (solid circle) lengths of waveguides and different input probe powers (from top to bottom): -20dBm, -10dBm and 0dBm.

Fig. 5.
Fig. 5.

Chip gain of probe wave at front facet versus reflectivity for 0.5mm (open circle) and 1mm (solid circle) lengths of waveguides and different input probe powers (from top to bottom): -20dBm, -10dBm and 0dBm.

Fig. 6.
Fig. 6.

The gain recovery time versus reflectivity. The powers of probe waves are (a)-20dBm, (b)-10dBm and (c)0dBm, respectively.

Fig. 7.
Fig. 7.

The phase change versus reflectivity. The powers of probe waves are (a)-20dBm, (b)-10dBm and (c)0dBm, respectively.

Fig. 8.
Fig. 8.

The extinction ratio versus reflectivity. The powers of probe waves are (a)-20dBm, (b)-10dBm and (c)0dBm, respectively.

Fig. 9.
Fig. 9.

The required pump peak power for XPM-induced phase change of π and gain recovery time at front (solid line) and rear (dash line) output facet respectively, as a function of wavelength of probe light.

Fig. 10.
Fig. 10.

The required pump peak power for XGM-induced ER of 10dB and gain recovery time at front (solid line) and rear (dash line) output facet respectively, as a function of wavelength of probe light.

Tables (1)

Tables Icon

Table 1. Symbols and values for calculating

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

g m ( ω 0 ) = c 2 2 n 1 2 ω 2 τ ( 2 m e m hh ħ ( m e + m hh ) ) 3 2 ( ω E g ħ ) 1 2
× ( f c ( ω ) f v ( ω ) ) T 2 π [ 1 + ( ω ω 0 ) 2 T 2 2 ]
= c 2 2 n 1 2 ω 0 2 τ ( 2 m e m hh ħ ( m e + m hh ) ) 3 2
× ( ω 0 E g ħ ) 1 2 ( f c ( ω 0 ) f v ( ω 0 ) )
g c ( ω 0 ) = g m ( ω 0 ) 1 + εS
r sp ( ω j ) = 1 πτ ( 2 m e m hh ħ ( m e + m hh ) ) 3 2 ( ω j E g ħ ) 1 2 f c ( ω j ) ( 1 f v ( ω j ) )
α int = K 0 + Γ K 1 N
g ( N , ω j ) = Γ g c ( N , ω j ) α int ( N )
d S j ASE ± ( z ) dz = g S j ASE ± ( z ) + R j ASE ±
S j ASE + ( L + ) = ( 1 R 2 ) β r sp v g ( 1 exp ( gL ) g ) ( 1 + R 1 exp ( gL ) ) T ( v j )
S j ASE ( 0 ) = ( 1 R 1 ) β r sp v g ( 1 exp ( gL ) g ) ( 1 + R 2 exp ( gL ) ) T ( v j )
T ( v j ) = exp ( gL ) ( 1 R 1 R 2 exp ( gL ) ) 2 { 1 1 + m sin 2 ( Φ 2 ) }
S j ASE ± ( z ) = R j ASE ± g [ C ± exp ( ± gz ) 1 ]
C + = [ ( 1 R 1 ) + R 1 exp ( gL ) ( 1 R 2 ) 1 R 1 R 2 exp ( 2 gL ) ]
C = [ ( 1 R 2 ) + R 2 exp ( gL ) ( 1 R 1 ) 1 R 1 R 2 exp ( 2 gL ) ] exp ( gL )
R j ASE ( ± ) = β r sp v g 1 R 1 R 2 exp ( 2 gL ) ( 1 R 1 R 2 exp ( gL ) ) 2 { 1 1 + m sin 2 ( Φ 2 ) }
dN ( z ) dt = I eV R ( N ) i R sti , i ( N ) R ASE ( N )
R ( N ) = ( A rad + A nrad ) N + ( B rad + B nrad ) N 2 + C aug N 3
R sti , i ( N ) = Γ g c v g ( S i + + S i )
R ASE ( N ) = Γ g c ( ω ) v g ( S ASE + + S ASE )
= Γ g c ( ω ) v g R j ASE g ( C + exp ( gz ) + C exp ( gz ) 2 )
R sti , i ( N m ) = Γ g c ( N m , ω i ) v g exp [ g ( N m , ω i ) Δ l ] 1 g ( N m , ω i ) Δ l ( S i , m + + S i , m + 1 )
R ASE ( N m ) = Γ g c ( ω ) v g Δ ω j ( S ¯ j ASE + + S ¯ j ASE )
= Γ g c ( ω ) v g Δ ω j [ exp [ g ( N m , ω j ) Δ l ] 1 g ( N m , ω j ) Δ l ( S j , m ASE + + S j , m + 1 ASE )
+ 2 R j ASE + ( N m ) g ( N m , ω j ) ] 2 R j ASE + ( N m ) g ( N m , ω j )

Metrics