Abstract

We present an all-optical modulator realized on a silicon chip. The proposed modulator has nano scale dimensions and a high extinction ratio. Its operation principle is based on a spatially non-uniform variation of the absorption of a miniaturized, silicon waveguide - based Mach-Zehnder interferometer (MZI). The absorption variation is obtained by illuminating the MZI with visible light. Our modulator may be used as an interfacing link between microelectronic processing circuits and optical information transmission links. We provide details on the fabrication and the experimental characterization of the suggested device. Since the operation principle is not based on a high Finesse resonator, the modulator is less sensitive to wavelength changes and its operation rate is not connected to the time required for the optical response to reach steady state but rather to material related effects.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal micro devices for optical integration," Opt. Lett. 28, 637-639 (2003).
    [CrossRef] [PubMed]
  2. E. Yablonovich, "Photonic crystals: semiconductors of light," Sci. Am. 285, 47-55 (2001).
  3. T. F. Krauss, "Planar photonic crystal waveguide devices for integrated optics," Phys. Status Solidi A 197, 688-702 (2003).
    [CrossRef]
  4. M. Loncar, T. Doll, J. VucּKovicּand A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol 18, 1402-1411 (2000).
    [CrossRef]
  5. H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn and U. Gösele, "Tuning a 2-D silicon photonic crystal using nonlinear optics," Conf. on Laser and Electro-Optics 2004 Vol. IFD2 (Optical Society of America, Washington DC, 2004).
  6. K. K. Lee, D. R. Lim and L. C. Kimerling, "Fabrication of ultra low-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  7. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  8. R. L. Espinola, J. I. Dadap, Jr. R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultra small silicon-on-insulator wire waveguides," Opt Express 12, 3713-3718 (2004).
    [CrossRef] [PubMed]
  9. Q. Xu, V. R. Almeida and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt Express 12, 4437-4442 (2004).
    [CrossRef] [PubMed]
  10. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  11. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  12. S. Stepanov and S. Ruschin, "Modulation of light by light in silicon-on-insulator waveguides," Appl. Phys. Lett. 83, 5151-5153 (2003).
    [CrossRef]
  13. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  14. D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).
  15. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
    [CrossRef] [PubMed]
  16. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  17. Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  18. H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  19. M. Fetterman, C. P. Chao and S. R. Forrest, "Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength," IEEE Photon. Technol. Lett. 8, 69-71 (1996).
    [CrossRef]
  20. O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
    [CrossRef]
  21. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
    [CrossRef]
  22. C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
    [CrossRef]
  23. D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
    [CrossRef]
  24. D. Marris, E. Cassan and L. Vivien, "Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation," J. Appl. Phys. 96, 6109-6112 (2004).
    [CrossRef]
  25. S. F. Preble, V. R. Almeida and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," SPIE 49th Annual Meeting, Proc. SPIE 5511, 10-17 (2004).
  26. R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE- 23, 123-129 (1987).
    [CrossRef]
  27. R. A. Soref and B. R. Bennet, "Kramers-Kronig analysis of E-O switching in silicon," SPIE Integr. Opt. Circuit Eng. 704, 32-37 (1986).
  28. Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
    [CrossRef]

2006 (1)

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

2005 (4)

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

2004 (9)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, Jr. R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultra small silicon-on-insulator wire waveguides," Opt Express 12, 3713-3718 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

D. Marris, E. Cassan and L. Vivien, "Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation," J. Appl. Phys. 96, 6109-6112 (2004).
[CrossRef]

S. F. Preble, V. R. Almeida and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," SPIE 49th Annual Meeting, Proc. SPIE 5511, 10-17 (2004).

2003 (3)

S. Stepanov and S. Ruschin, "Modulation of light by light in silicon-on-insulator waveguides," Appl. Phys. Lett. 83, 5151-5153 (2003).
[CrossRef]

T. F. Krauss, "Planar photonic crystal waveguide devices for integrated optics," Phys. Status Solidi A 197, 688-702 (2003).
[CrossRef]

C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal micro devices for optical integration," Opt. Lett. 28, 637-639 (2003).
[CrossRef] [PubMed]

2002 (2)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

2001 (2)

2000 (1)

M. Loncar, T. Doll, J. VucּKovicּand A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol 18, 1402-1411 (2000).
[CrossRef]

1998 (1)

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

1996 (1)

M. Fetterman, C. P. Chao and S. R. Forrest, "Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength," IEEE Photon. Technol. Lett. 8, 69-71 (1996).
[CrossRef]

1995 (1)

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE- 23, 123-129 (1987).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Almeida, V. R.

S. F. Preble, V. R. Almeida and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," SPIE 49th Annual Meeting, Proc. SPIE 5511, 10-17 (2004).

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

Asghari, M.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bennet, B. R.

R. A. Soref and B. R. Bennet, "Kramers-Kronig analysis of E-O switching in silicon," SPIE Integr. Opt. Circuit Eng. 704, 32-37 (1986).

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE- 23, 123-129 (1987).
[CrossRef]

Bouville, D.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

Bouwmans, G.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

Boyraz, O.

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

Brindel, P.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

Cassan, E.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

D. Marris, E. Cassan and L. Vivien, "Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation," J. Appl. Phys. 96, 6109-6112 (2004).
[CrossRef]

Chao, C. P.

M. Fetterman, C. P. Chao and S. R. Forrest, "Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength," IEEE Photon. Technol. Lett. 8, 69-71 (1996).
[CrossRef]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Cordeiro, C.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

Dadap, J. I.

R. L. Espinola, J. I. Dadap, Jr. R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultra small silicon-on-insulator wire waveguides," Opt Express 12, 3713-3718 (2004).
[CrossRef] [PubMed]

Dainese, P.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

Damlencourt, J. F.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

Day, I. E.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Desurvire, E.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

Doll, T.

M. Loncar, T. Doll, J. VucּKovicּand A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol 18, 1402-1411 (2000).
[CrossRef]

Drake, J.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Duchet, C.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

Espinola, R. L.

R. L. Espinola, J. I. Dadap, Jr. R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultra small silicon-on-insulator wire waveguides," Opt Express 12, 3713-3718 (2004).
[CrossRef] [PubMed]

Fan, S.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Fedeli, J. M.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

Fetterman, M.

M. Fetterman, C. P. Chao and S. R. Forrest, "Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength," IEEE Photon. Technol. Lett. 8, 69-71 (1996).
[CrossRef]

Forrest, S. R.

M. Fetterman, C. P. Chao and S. R. Forrest, "Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength," IEEE Photon. Technol. Lett. 8, 69-71 (1996).
[CrossRef]

Franck, T.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

George, A. K.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

Goix, M.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Grard, E.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Harpin, A.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Ho, P. T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Hodge, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Jalali, B.

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

July, N.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

Keil, U. D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

Kimerling, L. C.

Krauss, T. F.

T. F. Krauss, "Planar photonic crystal waveguide devices for integrated optics," Phys. Status Solidi A 197, 688-702 (2003).
[CrossRef]

Laval, S.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

Le Roux, X.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

Leclerc, O.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

Lee, K. K.

Liang, T. K.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Liao, L.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

Lim, D. R.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

S. F. Preble, V. R. Almeida and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," SPIE 49th Annual Meeting, Proc. SPIE 5511, 10-17 (2004).

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

Loncar, M.

M. Loncar, T. Doll, J. VucּKovicּand A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol 18, 1402-1411 (2000).
[CrossRef]

Luan, F.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

Luo, C.

Marris, D.

D. Marris, E. Cassan and L. Vivien, "Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation," J. Appl. Phys. 96, 6109-6112 (2004).
[CrossRef]

Marris-Morini, D.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

Maunand, E.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

McNab, S. J.

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

Morse, M.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Palomo, J.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

Paniccla, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Pascal, D.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

S. F. Preble, V. R. Almeida and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," SPIE 49th Annual Meeting, Proc. SPIE 5511, 10-17 (2004).

Reed, G. T.

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Roberts, S. W.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Rubin, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

Ruschin, S.

S. Stepanov and S. Ruschin, "Modulation of light by light in silicon-on-insulator waveguides," Appl. Phys. Lett. 83, 5151-5153 (2003).
[CrossRef]

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE- 23, 123-129 (1987).
[CrossRef]

R. A. Soref and B. R. Bennet, "Kramers-Kronig analysis of E-O switching in silicon," SPIE Integr. Opt. Circuit Eng. 704, 32-37 (1986).

Stepanov, S.

S. Stepanov and S. Ruschin, "Modulation of light by light in silicon-on-insulator waveguides," Appl. Phys. Lett. 83, 5151-5153 (2003).
[CrossRef]

Tang, C. K.

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

Tsang, H. K.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Vivien, L.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

D. Marris, E. Cassan and L. Vivien, "Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation," J. Appl. Phys. 96, 6109-6112 (2004).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

Wong, C. S

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

Yablonovich, E.

E. Yablonovich, "Photonic crystals: semiconductors of light," Sci. Am. 285, 47-55 (2001).

Zalevsky, Z.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

S. Stepanov and S. Ruschin, "Modulation of light by light in silicon-on-insulator waveguides," Appl. Phys. Lett. 83, 5151-5153 (2003).
[CrossRef]

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Electron. Lett. (2)

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand and E. Desurvire. "Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration," Electron. Lett. 34, 1011-1013 (1998).
[CrossRef]

C. K. Tang and G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar and P. T. Ho. "All-optical nonlinear switching in GaAs-AlGaAs microring resonators," IEEE Photon. Technol. Lett. 14, 74-76 (2002).
[CrossRef]

M. Fetterman, C. P. Chao and S. R. Forrest, "Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength," IEEE Photon. Technol. Lett. 8, 69-71 (1996).
[CrossRef]

J. Appl. Phys. (1)

D. Marris, E. Cassan and L. Vivien, "Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation," J. Appl. Phys. 96, 6109-6112 (2004).
[CrossRef]

J. Lightwave Technol (1)

M. Loncar, T. Doll, J. VucּKovicּand A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol 18, 1402-1411 (2000).
[CrossRef]

J. Lumin. (1)

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo and S. Laval, "High speed all-silicon optical modulator," J. Lumin.  121, 387-390 (2006).
[CrossRef]

J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE- 23, 123-129 (1987).
[CrossRef]

Nature (4)

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccla, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Opt Express (5)

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, Jr. R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultra small silicon-on-insulator wire waveguides," Opt Express 12, 3713-3718 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

Opt. Eng. (1)

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro and N. July, "Photonic crystal in-fiber devices," Opt. Eng. 44, 125003 (2005).
[CrossRef]

Opt. Lett. (2)

OSA Proceeding Series (1)

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin and O. Cohen, "A gigahertz silicon-on-insulator Mach-Zehnder modulator," OSA Proceeding Series 2, 3-5 (2004).

Phys. Status Solidi A (1)

T. F. Krauss, "Planar photonic crystal waveguide devices for integrated optics," Phys. Status Solidi A 197, 688-702 (2003).
[CrossRef]

Proc. SPIE (1)

S. F. Preble, V. R. Almeida and M. Lipson, "Optically controlled photonic crystal nanocavity in silicon," SPIE 49th Annual Meeting, Proc. SPIE 5511, 10-17 (2004).

Sci. Am. (1)

E. Yablonovich, "Photonic crystals: semiconductors of light," Sci. Am. 285, 47-55 (2001).

Other (2)

H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn and U. Gösele, "Tuning a 2-D silicon photonic crystal using nonlinear optics," Conf. on Laser and Electro-Optics 2004 Vol. IFD2 (Optical Society of America, Washington DC, 2004).

R. A. Soref and B. R. Bennet, "Kramers-Kronig analysis of E-O switching in silicon," SPIE Integr. Opt. Circuit Eng. 704, 32-37 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic sketch of the designed device. (a). Present implementation. (b). Proposed implementation.

Fig. 2.
Fig. 2.

Fabrication of the device in silicon. Images of the device.

Fig. 3.
Fig. 3.

Numerical simulations for the nano-scale all-optical modulator. (a) Constructive interference of the MZI. (b) Destructive interference of the MZI.

Fig. 4.
Fig. 4.

Measurements of the spectral response of the fabricated device while illuminated by speckles at 532nm.

Fig. 5.
Fig. 5.

(a) Measurements of the temporal response of the device. The visible illumination was at 532nm with pulses with a duty cycle of 5%. The various colors designate information Wavelengths. (b) The temporal response of the visible modulation laser for various duty cycles (designated as D.C. at the right part of the figure).

Fig. 6.
Fig. 6.

Measurements of the difference between the case of illumination (with visible light at wavelength of 532nm and duty cycle of 5%) over a waveguide edge (blue line) in comparison with illumination directly over the interferometer.

Fig. 7.
Fig. 7.

Measurements of the effect of visible illumination power on the contrast of the modulation of the IR information beam (at 1546nm). The current supplied to the visible Nd:YAG laser is in [mA]. 400mA is the minimal current required to obtain the modulation effect in our experimental setting.

Fig. 8.
Fig. 8.

The optical power of the visible modulating laser required to modulate the IR radiation passing through the optical waveguide.

Fig. 9.
Fig. 9.

The device illuminated from above while light is being coupled into it. In the right part one may see the projected speckle pattern responsible for the modulation due to the spatial non uniformity.

Fig. 10.
Fig. 10.

(a). Photonic crystal fiber with silicon rod. (b). Regular fiber with silicon core. (c). Side view of the fiber of Fig. 10(b) showing the continuity of the silicon rod.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ α = Δ α e + Δ α h = 8.5 × 10 18 Δ N + 6 × 10 18 Δ P
Δ n = Δ n e + Δ n h = [ 8.8 × 10 22 Δ N + 8.5 × 10 18 ( Δ P ) 0.8 ]

Metrics