Abstract

We present an all-optical modulator realized on a silicon chip. The proposed modulator has nano scale dimensions and a high extinction ratio. Its operation principle is based on a spatially non-uniform variation of the absorption of a miniaturized, silicon waveguide - based Mach-Zehnder interferometer (MZI). The absorption variation is obtained by illuminating the MZI with visible light. Our modulator may be used as an interfacing link between microelectronic processing circuits and optical information transmission links. We provide details on the fabrication and the experimental characterization of the suggested device. Since the operation principle is not based on a high Finesse resonator, the modulator is less sensitive to wavelength changes and its operation rate is not connected to the time required for the optical response to reach steady state but rather to material related effects.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal micro devices for optical integration,” Opt. Lett. 28, 637–639 (2003).
    [CrossRef] [PubMed]
  2. E. Yablonovich, “Photonic crystals: semiconductors of light,” Sci. Am. 285, 47–55 (2001).
  3. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688–702 (2003).
    [CrossRef]
  4. M. Loncar, T. Doll, J. Vuc ∙ Kovic ∙, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol 18, 1402–1411 (2000).
    [CrossRef]
  5. H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Tuning a 2-D silicon photonic crystal using nonlinear optics,” Conf. on Laser and Electro-Optics 2004Vol. IFD2 (Optical Society of America, Washington DC, 2004).
  6. K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultra low-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [CrossRef]
  7. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt Express 12, 1622–1631 (2004).
    [CrossRef] [PubMed]
  8. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt Express 12, 3713–3718 (2004).
    [CrossRef] [PubMed]
  9. Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt Express 12, 4437–4442 (2004).
    [CrossRef] [PubMed]
  10. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt Express 12, 5269–5273 (2004).
    [CrossRef] [PubMed]
  11. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
    [CrossRef] [PubMed]
  12. S. Stepanov and S. Ruschin, “Modulation of light by light in silicon-on-insulator waveguides,” Appl. Phys. Lett. 83, 5151–5153 (2003).
    [CrossRef]
  13. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [CrossRef] [PubMed]
  14. D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).
  15. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
    [CrossRef] [PubMed]
  16. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [CrossRef] [PubMed]
  17. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [CrossRef] [PubMed]
  18. H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
    [CrossRef]
  19. M. Fetterman, C. P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
    [CrossRef]
  20. O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
    [CrossRef]
  21. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
    [CrossRef]
  22. C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452 (1995).
    [CrossRef]
  23. D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
    [CrossRef]
  24. D. Marris, E. Cassan, and L. Vivien, “Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation,” Journal of Applied Physics 96, 6109–6112 (2004).
    [CrossRef]
  25. S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” SPIE 49th Annual Meeting, Proceedings of SPIE Vol. 5511, 10–17 (2004).
  26. R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE. Journal of Quantum Electronics QE-23, 123–129 (1987).
    [CrossRef]
  27. R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng., 704 (1986).
  28. Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
    [CrossRef]

2006 (1)

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

2005 (4)

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

2004 (9)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt Express 12, 1622–1631 (2004).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt Express 12, 3713–3718 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt Express 12, 4437–4442 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt Express 12, 5269–5273 (2004).
[CrossRef] [PubMed]

D. Marris, E. Cassan, and L. Vivien, “Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation,” Journal of Applied Physics 96, 6109–6112 (2004).
[CrossRef]

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” SPIE 49th Annual Meeting, Proceedings of SPIE Vol. 5511, 10–17 (2004).

2003 (3)

C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal micro devices for optical integration,” Opt. Lett. 28, 637–639 (2003).
[CrossRef] [PubMed]

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688–702 (2003).
[CrossRef]

S. Stepanov and S. Ruschin, “Modulation of light by light in silicon-on-insulator waveguides,” Appl. Phys. Lett. 83, 5151–5153 (2003).
[CrossRef]

2002 (2)

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

2001 (2)

2000 (1)

M. Loncar, T. Doll, J. Vuc ∙ Kovic ∙, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol 18, 1402–1411 (2000).
[CrossRef]

1998 (1)

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

1996 (1)

M. Fetterman, C. P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[CrossRef]

1995 (1)

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452 (1995).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE. Journal of Quantum Electronics QE-23, 123–129 (1987).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Almeida, V. R.

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” SPIE 49th Annual Meeting, Proceedings of SPIE Vol. 5511, 10–17 (2004).

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt Express 12, 4437–4442 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Asghari, M.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Bennet, B. R.

R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng., 704 (1986).

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE. Journal of Quantum Electronics QE-23, 123–129 (1987).
[CrossRef]

Bouville, D.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Bouwmans, G.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

Boyraz, O.

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt Express 12, 5269–5273 (2004).
[CrossRef] [PubMed]

Brindel, P.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

Cassan, E.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

D. Marris, E. Cassan, and L. Vivien, “Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation,” Journal of Applied Physics 96, 6109–6112 (2004).
[CrossRef]

Chao, C. P.

M. Fetterman, C. P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[CrossRef]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

Cordeiro, C.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

Dadap, J. I.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt Express 12, 3713–3718 (2004).
[CrossRef] [PubMed]

Dainese, P.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

Damlencourt, J. F.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Day, I. E.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Desurvire, E.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

Doll, T.

M. Loncar, T. Doll, J. Vuc ∙ Kovic ∙, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol 18, 1402–1411 (2000).
[CrossRef]

Drake, J.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Duchet, C.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

Espinola, R. L.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt Express 12, 3713–3718 (2004).
[CrossRef] [PubMed]

Fan, S.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Fedeli, J. M.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Fetterman, M.

M. Fetterman, C. P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[CrossRef]

Forrest, S. R.

M. Fetterman, C. P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[CrossRef]

Franck, T.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

George, A. K.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

Goix, M.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Gösele, U.

H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Tuning a 2-D silicon photonic crystal using nonlinear optics,” Conf. on Laser and Electro-Optics 2004Vol. IFD2 (Optical Society of America, Washington DC, 2004).

Grard, E.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Harpin, A.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Ho, P. T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Hodge, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Jalali, B.

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt Express 12, 5269–5273 (2004).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

July, N.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

Keil, U. D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

Kimerling, L. C.

Krauss, T. F.

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688–702 (2003).
[CrossRef]

Laval, S.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Le Roux, X.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Leclerc, O.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

Lee, K. K.

Liang, T. K.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Liao, L.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Lim, D. R.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt Express 12, 4437–4442 (2004).
[CrossRef] [PubMed]

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” SPIE 49th Annual Meeting, Proceedings of SPIE Vol. 5511, 10–17 (2004).

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

Loncar, M.

M. Loncar, T. Doll, J. Vuc ∙ Kovic ∙, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol 18, 1402–1411 (2000).
[CrossRef]

Luan, F.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

Luo, C.

Marris, D.

D. Marris, E. Cassan, and L. Vivien, “Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation,” Journal of Applied Physics 96, 6109–6112 (2004).
[CrossRef]

Marris-Morini, D.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Maunand, E.

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

McNab, S. J.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt Express 12, 3713–3718 (2004).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt Express 12, 1622–1631 (2004).
[CrossRef] [PubMed]

Morse, M.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Osgood, R. M.

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt Express 12, 3713–3718 (2004).
[CrossRef] [PubMed]

Palomo, J.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

Paniccla, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Pascal, D.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” SPIE 49th Annual Meeting, Proceedings of SPIE Vol. 5511, 10–17 (2004).

Reed, G. T.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452 (1995).
[CrossRef]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Roberts, S. W.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

Rubin, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Ruschin, S.

S. Stepanov and S. Ruschin, “Modulation of light by light in silicon-on-insulator waveguides,” Appl. Phys. Lett. 83, 5151–5153 (2003).
[CrossRef]

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

Scherer, A.

M. Loncar, T. Doll, J. Vuc ∙ Kovic ∙, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol 18, 1402–1411 (2000).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Schweizer, S. L.

H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Tuning a 2-D silicon photonic crystal using nonlinear optics,” Conf. on Laser and Electro-Optics 2004Vol. IFD2 (Optical Society of America, Washington DC, 2004).

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE. Journal of Quantum Electronics QE-23, 123–129 (1987).
[CrossRef]

R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng., 704 (1986).

Stepanov, S.

S. Stepanov and S. Ruschin, “Modulation of light by light in silicon-on-insulator waveguides,” Appl. Phys. Lett. 83, 5151–5153 (2003).
[CrossRef]

Tan, H. W.

H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Tuning a 2-D silicon photonic crystal using nonlinear optics,” Conf. on Laser and Electro-Optics 2004Vol. IFD2 (Optical Society of America, Washington DC, 2004).

Tang, C. K.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452 (1995).
[CrossRef]

Tsang, H. K.

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Van Driel, H. M.

H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Tuning a 2-D silicon photonic crystal using nonlinear optics,” Conf. on Laser and Electro-Optics 2004Vol. IFD2 (Optical Society of America, Washington DC, 2004).

Vivien, L.

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

D. Marris, E. Cassan, and L. Vivien, “Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation,” Journal of Applied Physics 96, 6109–6112 (2004).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt Express 12, 1622–1631 (2004).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt Express 12, 3713–3718 (2004).
[CrossRef] [PubMed]

Vuc · Kovic ·, J.

M. Loncar, T. Doll, J. Vuc ∙ Kovic ∙, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol 18, 1402–1411 (2000).
[CrossRef]

Wehrspohn, R. B.

H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Tuning a 2-D silicon photonic crystal using nonlinear optics,” Conf. on Laser and Electro-Optics 2004Vol. IFD2 (Optical Society of America, Washington DC, 2004).

Wong, C. S

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt Express 12, 4437–4442 (2004).
[CrossRef] [PubMed]

Yablonovich, E.

E. Yablonovich, “Photonic crystals: semiconductors of light,” Sci. Am. 285, 47–55 (2001).

Zalevsky, Z.

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

S. Stepanov and S. Ruschin, “Modulation of light by light in silicon-on-insulator waveguides,” Appl. Phys. Lett. 83, 5151–5153 (2003).
[CrossRef]

H. K. Tsang, C. S Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength.,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Electron. Lett. (2)

O. Leclerc, C. Duchet, P. Brindel, M. Goix, E. Grard, E. Maunand, and E. Desurvire. “Polarisation-independent InP push-pull Mach-Zehnder modulation for 20 Gbit/s soliton regeneration,” Electron. Lett. 34, 1011–1013 (1998).
[CrossRef]

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31, 451–452 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho. “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

M. Fetterman, C. P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulation for use at 1.55 μm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[CrossRef]

IEEE. Journal of Quantum Electronics (1)

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE. Journal of Quantum Electronics QE-23, 123–129 (1987).
[CrossRef]

J. Lightwave Technol (1)

M. Loncar, T. Doll, J. Vuc ∙ Kovic ∙, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol 18, 1402–1411 (2000).
[CrossRef]

J. Lumin. (1)

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fedeli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, “High speed all-silicon optical modulator,” J. Lumin.,  121, 387–390 (2006).
[CrossRef]

Journal of Applied Physics (1)

D. Marris, E. Cassan, and L. Vivien, “Response time analysis of SiGeSi modulation-doped multiple-quantum-well structures for optical modulation,” Journal of Applied Physics 96, 6109–6112 (2004).
[CrossRef]

Nature (4)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Opt Express (5)

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt Express 13, 3129–3135 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt Express 12, 1622–1631 (2004).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultra small silicon-on-insulator wire waveguides,” Opt Express 12, 3713–3718 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt Express 12, 4437–4442 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt Express 12, 5269–5273 (2004).
[CrossRef] [PubMed]

Opt. Eng. (1)

Z. Zalevsky, A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, “Photonic crystal in-fiber devices,” Opt. Eng. 44, 125003 (2005).
[CrossRef]

Opt. Lett. (2)

OSA Proceeding Series (1)

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” OSA Proceeding Series 2, 3–5 (2004).

Phys. Status Solidi A (1)

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688–702 (2003).
[CrossRef]

Sci. Am. (1)

E. Yablonovich, “Photonic crystals: semiconductors of light,” Sci. Am. 285, 47–55 (2001).

SPIE 49th Annual Meeting, Proceedings of SPIE (1)

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” SPIE 49th Annual Meeting, Proceedings of SPIE Vol. 5511, 10–17 (2004).

Other (2)

R. A. Soref and B. R. Bennet, “Kramers-Kronig analysis of E-O switching in silicon,” SPIE Integr. Opt. Circuit Eng., 704 (1986).

H. W. Tan, H. M. Van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Tuning a 2-D silicon photonic crystal using nonlinear optics,” Conf. on Laser and Electro-Optics 2004Vol. IFD2 (Optical Society of America, Washington DC, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic sketch of the designed device. (a). Present implementation. (b). Proposed implementation.

Fig. 2.
Fig. 2.

Fabrication of the device in silicon. Images of the device.

Fig. 3.
Fig. 3.

Numerical simulations for the nano-scale all-optical modulator. (a) Constructive interference of the MZI. (b) Destructive interference of the MZI.

Fig. 4.
Fig. 4.

Measurements of the spectral response of the fabricated device while illuminated by speckles at 532nm.

Fig. 5.
Fig. 5.

(a) Measurements of the temporal response of the device. The visible illumination was at 532nm with pulses with a duty cycle of 5%. The various colors designate information Wavelengths. (b) The temporal response of the visible modulation laser for various duty cycles (designated as D.C. at the right part of the figure).

Fig. 6.
Fig. 6.

Measurements of the difference between the case of illumination (with visible light at wavelength of 532nm and duty cycle of 5%) over a waveguide edge (blue line) in comparison with illumination directly over the interferometer.

Fig. 7.
Fig. 7.

Measurements of the effect of visible illumination power on the contrast of the modulation of the IR information beam (at 1546nm). The current supplied to the visible Nd:YAG laser is in [mA]. 400mA is the minimal current required to obtain the modulation effect in our experimental setting.

Fig. 8.
Fig. 8.

The optical power of the visible modulating laser required to modulate the IR radiation passing through the optical waveguide.

Fig. 9.
Fig. 9.

The device illuminated from above while light is being coupled into it. In the right part one may see the projected speckle pattern responsible for the modulation due to the spatial non uniformity.

Fig. 10.
Fig. 10.

(a). Photonic crystal fiber with silicon rod. (b). Regular fiber with silicon core. (c). Side view of the fiber of Fig. 10(b) showing the continuity of the silicon rod.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ α = Δ α e + Δ α h = 8.5 × 10 18 Δ N + 6 × 10 18 Δ P
Δ n = Δ n e + Δ n h = [ 8.8 × 10 22 Δ N + 8.5 × 10 18 ( Δ P ) 0.8 ]

Metrics