Abstract

We demonstrate a simple technique for coupling freely propagating broadband THz radiation to multi-cycle THz pulses on a cylindrical metal wire. This is accomplished by inserting the tapered end of a cylindrical wire into the center of a subwavelength circular aperture fabricated in a freestanding metal film, forming an effective coaxial waveguide. By doing so, we convert the transmission properties of THz pulses through the aperture from an evanescent mode to a propagating mode. By fabricating concentric annular grooves about the aperture, multicycle THz pulses are coupled to the wire. The individual groove geometry, number of grooves, and groove spacing surrounding the subwavelength aperture on the metal film determine the shape of THz pulses launched on the waveguide.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sommerfeld, Electrodynamics (Academic, New York, 1952), 177-190.
  2. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  3. T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  4. M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10815>
    [CrossRef] [PubMed]
  5. K. Wang and D. M. Mittleman, "Guided propagation of terahertz pulses on metal wires," J. Opt. Soc. Am. B 22, 2001-2008 (2005).
    [CrossRef]
  6. M.  Walther, M. R.  Freeman, and F. A.  Hegmann, "Metal wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
    [CrossRef]
  7. N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106 (2005).
    [CrossRef]
  8. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
    [CrossRef]
  9. G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting. "Apertureless terahertz near-field microscopy".Sem. Sci. Technol. 20, S286 (2005).
    [CrossRef]
  10. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  11. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021>
    [CrossRef] [PubMed]
  12. J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE, in press (2007).
  13. J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-279>
    [CrossRef] [PubMed]
  14. H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7028>
    [CrossRef] [PubMed]
  15. H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13,763-769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763>
    [CrossRef] [PubMed]
  16. A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13,3535-3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535>
    [CrossRef] [PubMed]
  17. A. Agrawal, H. Cao, and A. Nahata, "Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission," New J. Phys.  7, 249 (2005), http://www.iop.org/EJ/abstract/1367-2630/7/1/249>
    [CrossRef]
  18. A. Agrawal and A. Nahata, "Time-domain radiative properties of a single subwavelength aperture surrounded by an exit side surface corrugation," Opt. Express 14, 1973-1981 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1973>
    [CrossRef] [PubMed]
  19. F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced confined light transmission by single subwavelength apertures in metallic films, " Appl. Opt. 42, 6811-6815 (2003)
    [CrossRef] [PubMed]
  20. H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-5-1666>
    [CrossRef] [PubMed]
  21. N. Marcuvitz, Waveguide Handbook, (New York: McGraw-Hill, 1951).
  22. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, "Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification," Opt. Lett. 32, 433-435 (2007)].
    [CrossRef] [PubMed]

2007

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE, in press (2007).

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, "Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification," Opt. Lett. 32, 433-435 (2007)].
[CrossRef] [PubMed]

2006

2005

G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting. "Apertureless terahertz near-field microscopy".Sem. Sci. Technol. 20, S286 (2005).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10815>
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, "Guided propagation of terahertz pulses on metal wires," J. Opt. Soc. Am. B 22, 2001-2008 (2005).
[CrossRef]

M.  Walther, M. R.  Freeman, and F. A.  Hegmann, "Metal wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7028>
[CrossRef] [PubMed]

H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13,763-769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763>
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13,3535-3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535>
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, "Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission," New J. Phys.  7, 249 (2005), http://www.iop.org/EJ/abstract/1367-2630/7/1/249>
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-5-1666>
[CrossRef] [PubMed]

2004

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

2003

Agrawal, A.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Baida, F. I.

Berndsen, N.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE, in press (2007).

Bulu, I.

Caglayan, H.

Cao, H.

Chai, L.

Chang, G.

Chen, H.-T.

G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting. "Apertureless terahertz near-field microscopy".Sem. Sci. Technol. 20, S286 (2005).
[CrossRef]

Chen, Y.

Cho, G. C.

G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting. "Apertureless terahertz near-field microscopy".Sem. Sci. Technol. 20, S286 (2005).
[CrossRef]

Deibel, J. A.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE, in press (2007).

J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-279>
[CrossRef] [PubMed]

Divin, C. J.

Escarra, M.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE, in press (2007).

Escarra, M. D.

Freeman, M. R.

M.  Walther, M. R.  Freeman, and F. A.  Hegmann, "Metal wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Galvanauskas, A.

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Guizal, B.

Hegmann, F. A.

M.  Walther, M. R.  Freeman, and F. A.  Hegmann, "Metal wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Hu, M.

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Karpowicz, N.

G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting. "Apertureless terahertz near-field microscopy".Sem. Sci. Technol. 20, S286 (2005).
[CrossRef]

Kersting, R.

G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting. "Apertureless terahertz near-field microscopy".Sem. Sci. Technol. 20, S286 (2005).
[CrossRef]

Kraatz, S.

G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting. "Apertureless terahertz near-field microscopy".Sem. Sci. Technol. 20, S286 (2005).
[CrossRef]

Kurz, H.

Li, Y.

Liu, C.-H.

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Mittleman, D.

Mittleman, D. M.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE, in press (2007).

K. Wang and D. M. Mittleman, "Guided propagation of terahertz pulses on metal wires," J. Opt. Soc. Am. B 22, 2001-2008 (2005).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Nagel, M.

Nahata, A.

Norris, T. B.

Ozbay, E.

Planken, P. C. M.

N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

Song, Z.

van der Valk, N. C. J.

N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

Van Labeke, D.

Wächter, M.

Walther, M.

M.  Walther, M. R.  Freeman, and F. A.  Hegmann, "Metal wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Wang, C.-Y.

Wang, K.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE, in press (2007).

J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-279>
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, "Guided propagation of terahertz pulses on metal wires," J. Opt. Soc. Am. B 22, 2001-2008 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

Williamson, S. L.

Xing, Q.

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Zhang, Z.

Appl. Opt.

Appl. Phys. Lett.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

M.  Walther, M. R.  Freeman, and F. A.  Hegmann, "Metal wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Nature

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

New J. Phys.

A. Agrawal, H. Cao, and A. Nahata, "Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission," New J. Phys.  7, 249 (2005), http://www.iop.org/EJ/abstract/1367-2630/7/1/249>
[CrossRef]

Opt. Express

A. Agrawal and A. Nahata, "Time-domain radiative properties of a single subwavelength aperture surrounded by an exit side surface corrugation," Opt. Express 14, 1973-1981 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1973>
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-5-1666>
[CrossRef] [PubMed]

M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10815>
[CrossRef] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021>
[CrossRef] [PubMed]

J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14, 279-290 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-279>
[CrossRef] [PubMed]

H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7028>
[CrossRef] [PubMed]

H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13,763-769 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763>
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13,3535-3542 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535>
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Proc. IEEE

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE, in press (2007).

Sem. Sci. Technol.

G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting. "Apertureless terahertz near-field microscopy".Sem. Sci. Technol. 20, S286 (2005).
[CrossRef]

Other

A. Sommerfeld, Electrodynamics (Academic, New York, 1952), 177-190.

N. Marcuvitz, Waveguide Handbook, (New York: McGraw-Hill, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Photograph of a typical bullseye structure used in the experiment. (b) Schematic diagram of the experimental setup. The THz radiation was normally incident on the structured metal foil. The photoconductive detector was placed approximately 7 cm from the metal foil and offset from the center of the wire. The wire length was approximately 6 cm.

Fig. 2.
Fig. 2.

(a). Measured terahertz waveform incident on the bullseye structure. The measurement was performed with the Teflon sheet in place, but without the bullseye structure or the wire in the THz beam path. (b). The corresponding amplitude spectra.

Fig. 3.
Fig. 3.

(a). Experimentally observed time-domain waveforms for a tapered 6 cm long wire inserted into the center of the bullseye and the two-ring structure (red and green trace respectively), a tapered 6 cm long wire inserted into the center of the bare aperture (blue trace), and a tapered 1 cm long wire inserted into the center of the bullseye structure (black trace). The waveforms have been offset from the origin for clarity. Note that the magnitude of these waveforms may be compared against one another, but not with the waveform of Fig. 2(a). (b). Corresponding amplitude spectra using the same color scheme noted above. The additional black dashed spectrum is the reference spectrum from Fig. 2(b), appropriately scaled for purposes of comparison. The spectra have been offset from the origin for clarity.

Fig. 4.
Fig. 4.

Measured time-domain THz waveforms for THz pulses coupled to a tapered 700 μm diameter stainless steel wire for two different detection points. The upper trace shows the waveform measured with the photoconductive detector located 3 mm above the wire center, while the lower trace corresponds to the observed waveform taken with the detector placed 3 mm below the wire center. The inversion of the observed waveform with the change in the detector position demonstrates clearly the radial polarization of the wave.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f c = cm 2 πb
f c = c π ( a + b ) .

Metrics