Abstract

Optical trapping and manipulation offer great flexibility as a non-contact microassembly tool. Its application to the assembly of microscale building blocks may open new doors for micromachine technology. In this work, we demonstrate all-optical assembly of microscopic puzzle pieces in a fluidic environment using programmable arrays of trapping beams. Identical shape-complimentary pieces are optically fabricated with submicron resolution using two-photon polymerization (2PP) technique. These are efficiently assembled into space-filling tessellations by a multiple-beam optical micromanipulation system. The flexibility of the system allows us to demonstrate both user-interactive and computer-automated modes of serial and parallel assembly of microscale objects with high spatial and angular positioning precision.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gauthier, D. Heriban, D. Gendreau, S. Regnier, P. Lutz and N. Chaillet, "Micro-factory for submerged assembly: interests and architectures," Proc. 5th Int. Workshop on Microfactories (2006).
    [PubMed]
  2. J. J. Talghader, J. K. Tu, and J. S. Smith, "Integration of fluidically self-assembled optoelectronic devices using silicon-based process," IEEE Photon. Technol. Lett. 7, 1321-1323 (1995).
    [CrossRef]
  3. K. Hosokawa, I. Shimoyama and H. Miura, "Two-dimensional micro-self-assembly using the surface tension of water," Sens. Actuators, A: Physical 57, 117-125 (1996).
    [CrossRef]
  4. R. L. Eriksen, V. R. Daria, and J. Glückstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602 (2002).
    [PubMed]
  5. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, "Interactive light-driven and parallel manipulation of inhomogeneous particles," Opt. Express 10, 1550-1556 (2002).
    [PubMed]
  6. I. R. Perch-Nielsen, P. J. Rodrigo, C. A. Alonzo, and J. Glückstad, "Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment," Opt. Express 14, 12199-12205 (2006).
    [CrossRef] [PubMed]
  7. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  8. L. Kelemen, S. Valkai, and P. Ormos, "Integrated optical motor," Appl. Opt. 45, 2777-2780 (2006).
    [CrossRef] [PubMed]
  9. http://mathworld.wolfram.com/WallpaperGroups.html>
  10. A. T. O'Neil and M. J. Padgett, "Rotational control within optical tweezers by use of a rotating aperture," Opt. Lett. 27, 743-745 (2002).
    [CrossRef]
  11. A. Terray, J. Oakey and D. W. M. Marr, "Fabrication of linear colloidal structures for microfluidic applications," Appl. Phys. Lett. 81, 1555-1557 (2002).
    [CrossRef]

2006

2002

1997

1996

K. Hosokawa, I. Shimoyama and H. Miura, "Two-dimensional micro-self-assembly using the surface tension of water," Sens. Actuators, A: Physical 57, 117-125 (1996).
[CrossRef]

1995

J. J. Talghader, J. K. Tu, and J. S. Smith, "Integration of fluidically self-assembled optoelectronic devices using silicon-based process," IEEE Photon. Technol. Lett. 7, 1321-1323 (1995).
[CrossRef]

Alonzo, C. A.

Daria, V. R.

Eriksen, R. L.

Glückstad, J.

Hosokawa, K.

K. Hosokawa, I. Shimoyama and H. Miura, "Two-dimensional micro-self-assembly using the surface tension of water," Sens. Actuators, A: Physical 57, 117-125 (1996).
[CrossRef]

Kawata, S.

Kelemen, L.

Marr, D. W. M.

A. Terray, J. Oakey and D. W. M. Marr, "Fabrication of linear colloidal structures for microfluidic applications," Appl. Phys. Lett. 81, 1555-1557 (2002).
[CrossRef]

Maruo, S.

Miura, H.

K. Hosokawa, I. Shimoyama and H. Miura, "Two-dimensional micro-self-assembly using the surface tension of water," Sens. Actuators, A: Physical 57, 117-125 (1996).
[CrossRef]

Nakamura, O.

Oakey, J.

A. Terray, J. Oakey and D. W. M. Marr, "Fabrication of linear colloidal structures for microfluidic applications," Appl. Phys. Lett. 81, 1555-1557 (2002).
[CrossRef]

O'Neil, A. T.

Ormos, P.

Padgett, M. J.

Perch-Nielsen, I. R.

Rodrigo, P. J.

Shimoyama, I.

K. Hosokawa, I. Shimoyama and H. Miura, "Two-dimensional micro-self-assembly using the surface tension of water," Sens. Actuators, A: Physical 57, 117-125 (1996).
[CrossRef]

Smith, J. S.

J. J. Talghader, J. K. Tu, and J. S. Smith, "Integration of fluidically self-assembled optoelectronic devices using silicon-based process," IEEE Photon. Technol. Lett. 7, 1321-1323 (1995).
[CrossRef]

Talghader, J. J.

J. J. Talghader, J. K. Tu, and J. S. Smith, "Integration of fluidically self-assembled optoelectronic devices using silicon-based process," IEEE Photon. Technol. Lett. 7, 1321-1323 (1995).
[CrossRef]

Terray, A.

A. Terray, J. Oakey and D. W. M. Marr, "Fabrication of linear colloidal structures for microfluidic applications," Appl. Phys. Lett. 81, 1555-1557 (2002).
[CrossRef]

Tu, J. K.

J. J. Talghader, J. K. Tu, and J. S. Smith, "Integration of fluidically self-assembled optoelectronic devices using silicon-based process," IEEE Photon. Technol. Lett. 7, 1321-1323 (1995).
[CrossRef]

Valkai, S.

Appl. Opt.

Appl. Phys. Lett.

A. Terray, J. Oakey and D. W. M. Marr, "Fabrication of linear colloidal structures for microfluidic applications," Appl. Phys. Lett. 81, 1555-1557 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

J. J. Talghader, J. K. Tu, and J. S. Smith, "Integration of fluidically self-assembled optoelectronic devices using silicon-based process," IEEE Photon. Technol. Lett. 7, 1321-1323 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators, A: Physical

K. Hosokawa, I. Shimoyama and H. Miura, "Two-dimensional micro-self-assembly using the surface tension of water," Sens. Actuators, A: Physical 57, 117-125 (1996).
[CrossRef]

Other

http://mathworld.wolfram.com/WallpaperGroups.html>

M. Gauthier, D. Heriban, D. Gendreau, S. Regnier, P. Lutz and N. Chaillet, "Micro-factory for submerged assembly: interests and architectures," Proc. 5th Int. Workshop on Microfactories (2006).
[PubMed]

Supplementary Material (3)

» Media 1: AVI (2416 KB)     
» Media 2: AVI (2485 KB)     
» Media 3: AVI (2420 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Illustration of (a) the desired tessellation to be optically assembled and (b) a single micropuzzle element, which is a symmetric cutout of a circle of radius r.

Fig. 2.
Fig. 2.

Selected trajectories for the focused femtosecond laser beam in the 2PP fabrication of the puzzle pieces with characteristic radius r = 2.5 μm. Inset shows the corresponding SEM micrographs of the 2PP-fabricated structures.

Fig. 3.
Fig. 3.

Plot of the angular orientation and radial position of a puzzle piece as a function of time in the presence and absence of paired trapping beams. Relative positions of the paired traps are indicated by the two circular markers overlaid with the image of the trapped and horizontally oriented microobject (inset).

Fig. 4.
Fig. 4.

(AVI, 2.4 MB, 3x speed) User-interactive pick-and-place optical assembly of sixteen micropuzzle pieces into a 4×4 tiling. The linear and angular speeds at which the pieces are translated and rotated are ~2 μm/sec and ~20 deg/sec, respectively.

Fig. 5.
Fig. 5.

(AVI, 0.9 MB) Larger tessellation of sixteen micropuzzle pieces optically assembled in parallel into a 4×4 arrangement. Once assembled (~7 sec from 1st to 3rd frame), adjacent elements remain intact while the superstructure is displaced and rotated.

Fig. 6.
Fig. 6.

(AVI, 2.2 MB, 2x speed) Computer-automated “hunt-and-collect” procedure for tiling micropuzzle pieces. The dashed rectangle highlights the selected detection area where pieces coming from the left due to constant-speed sample stage movement are automatically detected. Once detected, trapping beams with appropriate target trajectories are immediately assigned.

Metrics