Abstract

An ultrafast pulse shaper, capable of both phase and amplitude shaping, is constructed using a single high-resolution liquid crystal phase mask. The shaper is calibrated with an inline spectral interferometry technique. Amplitude shaping is accomplished by writing to the mask a phase grating, whose period is smaller than the spectral focus, diffracting away selected frequencies in a controllable manner.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  2. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
    [CrossRef]
  3. A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
    [CrossRef] [PubMed]
  4. M. M. Wefers and K. A. Nelson, "Analysis of programmable ultrashort wave-form generation using liquid-crystal spatial light modulators," J. Opt. Soc. Am. B 12, 1343-1362 (1995).
    [CrossRef]
  5. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, "Femtosecond laser-pulse shaping by use of microsecond radio frequency pulses," Opt. Lett. 19, 737-739 (1994).
    [CrossRef] [PubMed]
  6. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, "Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator," Opt. Lett. 30, 323-325 (2005).
    [CrossRef] [PubMed]
  7. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000).
    [CrossRef]
  8. E. Frumker, E. Tal, Y. Silberberg, and D. Majer, "Femtosecond pulse-shape modulation at nanosecond rates," Opt. Lett. 30, 2796-2798 (2005).
    [CrossRef] [PubMed]
  9. V. Bagnoud and J. D. Zuegel, "Independent phase and amplitude control of a laser beam by use of a single-phaseonly spatial light modulator," Opt. Lett. 29, 295-297 (2004).
    [CrossRef] [PubMed]
  10. M. A. Dugan, J. X. Tull, andW. S.Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997).
    [CrossRef]
  11. T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
    [CrossRef]
  12. A. M. Weiner, "Femtosecond optical pulse shaping and processing," Prog. Quantum Electron. 19, 161-237 (1995).
    [CrossRef]
  13. S. Akturk, X. Gu, M. Kimmel, and R. Trebino, "Extremely simple single-prism ultrashort-pulse compressor," Opt. Express 14, 10,101-10,108 (2006).
    [CrossRef]
  14. D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
    [CrossRef]
  15. D. J. Kane, "Real-time measurement of ultrashort laser pulses using principal component generalized projections," IEEE J. Sel. Top. Quantum Electron. 4, 278-284 (1998).
    [CrossRef]
  16. P. Schlup, J. Wilson, K. Hartinger, and R. A. Bartels, "Dispersion-balancing of variable-delay monolithic pulse splitters," To be published in Appl. Opt. (2007).
  17. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based Topography and Interferometry," J. Opt. Soc. Am. 72, 156-160 (1982).
    [CrossRef]

2006

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, "Extremely simple single-prism ultrashort-pulse compressor," Opt. Express 14, 10,101-10,108 (2006).
[CrossRef]

2005

2004

2000

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000).
[CrossRef]

1998

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

D. J. Kane, "Real-time measurement of ultrashort laser pulses using principal component generalized projections," IEEE J. Sel. Top. Quantum Electron. 4, 278-284 (1998).
[CrossRef]

1997

1995

1994

1993

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

1982

Akturk, S.

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, "Extremely simple single-prism ultrashort-pulse compressor," Opt. Express 14, 10,101-10,108 (2006).
[CrossRef]

Assion, A.

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Backus, S.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Bagnoud, V.

Bartels, R.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Baumert, T.

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Binhammer, T.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Brixner, T.

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Cheng, Z.

Christov, I. P.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Dugan, M. A.

Ell, R.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Feurer, T.

Frumker, E.

Gerber, G.

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Goswami, D.

Gu, X.

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, "Extremely simple single-prism ultrashort-pulse compressor," Opt. Express 14, 10,101-10,108 (2006).
[CrossRef]

Hillegas, C. W.

Hornung, T.

Ina, H.

Kane, D. J.

D. J. Kane, "Real-time measurement of ultrashort laser pulses using principal component generalized projections," IEEE J. Sel. Top. Quantum Electron. 4, 278-284 (1998).
[CrossRef]

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Kapteyn, H. C.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Kartner, F. X.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Kiefer, B.

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Kimmel, M.

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, "Extremely simple single-prism ultrashort-pulse compressor," Opt. Express 14, 10,101-10,108 (2006).
[CrossRef]

Kobayashi, S.

Laude, V.

Majer, D.

Misoguti, L.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Morgner, U.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Murnane, M. M.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Nelson, K. A.

Rittweger, E.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Seyfried, V.

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Silberberg, Y.

Spielmann, C.

Strehle, M.

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Strickland, D.

Takeda, M.

Tal, E.

Tournois, P.

Trebino, R.

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, "Extremely simple single-prism ultrashort-pulse compressor," Opt. Express 14, 10,101-10,108 (2006).
[CrossRef]

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Tull, J. X.

Vaughan, J. C.

Vdovin, G.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Verluise, F.

Warren, W. S.

Wefers, M. M.

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

A. M. Weiner, "Femtosecond optical pulse shaping and processing," Prog. Quantum Electron. 19, 161-237 (1995).
[CrossRef]

Zeek, E.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Zuegel, J. D.

IEEE J. Quantum Electron.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. J. Kane, "Real-time measurement of ultrashort laser pulses using principal component generalized projections," IEEE J. Sel. Top. Quantum Electron. 4, 278-284 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Nature (London)

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature (London) 406, 164-166 (2000).
[CrossRef]

Opt. Express

S. Akturk, X. Gu, M. Kimmel, and R. Trebino, "Extremely simple single-prism ultrashort-pulse compressor," Opt. Express 14, 10,101-10,108 (2006).
[CrossRef]

Opt. Lett.

Prog. Quantum Electron.

A. M. Weiner, "Femtosecond optical pulse shaping and processing," Prog. Quantum Electron. 19, 161-237 (1995).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Science

A. Assion, T. Baumert,M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Other

P. Schlup, J. Wilson, K. Hartinger, and R. A. Bartels, "Dispersion-balancing of variable-delay monolithic pulse splitters," To be published in Appl. Opt. (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Calibration of phase φ with respect to wavelength λ and drive level. Surface mesh lines are shown to enhance visualization of surface curvature; actual data is collected at higher resolution.

Fig. 2.
Fig. 2.

Measured transmission T, plotted with respect to increasing phase grating depth ∆, as applied across the entire phase mask. Surface mesh lines are shown to enhance visualization of surface curvature; actual data is collected at higher resolution. Inset: line-out of the above plot at 790 nm, showing transmission T with respect to the phase grating depth (black line). Theoretical curve (light blue line) shown for comparison.

Fig. 3.
Fig. 3.

Verification of phase calibration by applying a low-frequency sinusoidal spectral phase. Spectral intensity (light blue patch), applied phase mask (red line), and phase as measured by spectral interferometry (black line).

Fig. 4.
Fig. 4.

(a) Measured spectral intensity (light blue patch) and phase (black line) for splitting a pulse into a delayed pair. (b) Temporal intensity, showing separation of 400 fs.

Fig. 5.
Fig. 5.

Spectral notch of increasing width. (a) Measured spectra, normalized by the first spectrum, showing increased attenuation and broadening of notch as phase grating width is increased. (b) Transmission T at 790 nm, showing increase in attenuation which levels off when the phase grating is wider than the spectral focus 2w 0, marked by the red dashed line.

Fig. 6.
Fig. 6.

Amplitude-only shaping. (a) Unshaped (red line) and shaped (light blue patch) square spectrum. (b) Resulting temporal profile (blue line), with a sinc2 (red line) for comparison. Spectral phase (green line) shows π phase offset between adjacent lobes.

Fig. 7.
Fig. 7.

Temporal profiles for the spectral double-slit experiment. Inset: FROG traces depict both measured (left half of trace) and numerically reconstructed (right half) traces.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E in ( ω ) e ( x αω ) 2 w 0 2 M ( x ) ,
M ( x ) = exp [ i Δ ( x ) sin ( 2 π f g x ) + i φ ( x ) ] ,
M ( x ) J 0 [ Δ ( x ) ] exp [ i φ ( x ) ] .

Metrics