Abstract

We present a detailed study of the effect of the carrier lifetime on the terahertz signal characteristics emitted by Br+-irradiated In0.53Ga0.47As photoconductive antennas excited by 1550 nm wavelength femtosecond optical pulses. The temporal waveforms and the average radiated powers for various carrier lifetimes are experimentally analyzed and compared to predictions of analytical models of charge transport. Improvements in bandwidth and in average power of the emitted terahertz radiation are observed with the decrease of the carrier lifetime on the emitter. The power radiated by ion-irradiated In0.53Ga0.47As photoconductive antennas excited by 1550 nm wavelength optical pulses is measured to be 0.8 μW. This value is comparable with or greater than that emitted by similar low temperature grown GaAs photoconductive antennas excited by 780 nm wavelength optical pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
    [Crossref]
  2. J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–599 (2005).
    [Crossref]
  3. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 1104–1106 (2005).
    [Crossref]
  4. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
    [Crossref]
  5. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504–163506 (2005).
    [Crossref]
  6. Tze-An Liu, M. Tani, and Ci-Ling Pan, “THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas,” J. Appl. Phys. 93, 2996–3001 (2003).
    [Crossref]
  7. B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials,” Semicond. Sci. Technol. 21, 283–286 (2006).
    [Crossref]
  8. S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
    [Crossref]
  9. M. Tani, S. Matsura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
    [Crossref]
  10. T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
    [Crossref]
  11. D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 m range,” Appl. Phys. Lett. 85, 239–241 (2004).
    [Crossref]
  12. J. P. Biersack and L. G. Haggmark, “A Monte Carlo program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Methods 174, 257 (1980).
    [Crossref]
  13. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
    [Crossref]
  14. S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
    [Crossref]
  15. L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7,615–623 (2001).
    [Crossref]
  16. This value is consistent with the values given by P.Y. Yu and M. Cardona, “Fundamentals of Semiconductors,” 2nd Edition, (Springer, 1999) p. 290.
  17. L. Joulaud, J. Mangeney, J.-M. Lourtioz, P. Crozat, and G. Patriarche “Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime,” Appl. Phys. Lett. 82, 856–8582003.
    [Crossref]
  18. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301–195307 (2005).
    [Crossref]
  19. D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117–161119 (2006).
    [Crossref]

2006 (2)

B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials,” Semicond. Sci. Technol. 21, 283–286 (2006).
[Crossref]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117–161119 (2006).
[Crossref]

2005 (6)

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301–195307 (2005).
[Crossref]

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–599 (2005).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 1104–1106 (2005).
[Crossref]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504–163506 (2005).
[Crossref]

2004 (1)

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 m range,” Appl. Phys. Lett. 85, 239–241 (2004).
[Crossref]

2003 (2)

Tze-An Liu, M. Tani, and Ci-Ling Pan, “THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas,” J. Appl. Phys. 93, 2996–3001 (2003).
[Crossref]

L. Joulaud, J. Mangeney, J.-M. Lourtioz, P. Crozat, and G. Patriarche “Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime,” Appl. Phys. Lett. 82, 856–8582003.
[Crossref]

2001 (1)

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7,615–623 (2001).
[Crossref]

1999 (2)

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[Crossref]

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
[Crossref]

1997 (1)

1996 (1)

1991 (1)

A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
[Crossref]

1980 (1)

J. P. Biersack and L. G. Haggmark, “A Monte Carlo program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Methods 174, 257 (1980).
[Crossref]

Aimez, V.

B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials,” Semicond. Sci. Technol. 21, 283–286 (2006).
[Crossref]

Beauvais, J.

B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials,” Semicond. Sci. Technol. 21, 283–286 (2006).
[Crossref]

Bernas, H.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

Biersack, J. P.

J. P. Biersack and L. G. Haggmark, “A Monte Carlo program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Methods 174, 257 (1980).
[Crossref]

Blary, K.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

Cardona, M.

This value is consistent with the values given by P.Y. Yu and M. Cardona, “Fundamentals of Semiconductors,” 2nd Edition, (Springer, 1999) p. 290.

Castro-Camus, E.

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301–195307 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–599 (2005).
[Crossref]

Chimot, N.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

Citrin, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117–161119 (2006).
[Crossref]

Coutaz, J.-L.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7,615–623 (2001).
[Crossref]

Crozat, P.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

L. Joulaud, J. Mangeney, J.-M. Lourtioz, P. Crozat, and G. Patriarche “Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime,” Appl. Phys. Lett. 82, 856–8582003.
[Crossref]

Duvillaret, L.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7,615–623 (2001).
[Crossref]

Garet, F.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7,615–623 (2001).
[Crossref]

Grisckowsky, D.

A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
[Crossref]

Haggmark, L. G.

J. P. Biersack and L. G. Haggmark, “A Monte Carlo program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Methods 174, 257 (1980).
[Crossref]

Houde, D.

B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials,” Semicond. Sci. Technol. 21, 283–286 (2006).
[Crossref]

Jacobsen, R. H.

Jepsen, P. U.

Johnston, M. B.

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301–195307 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–599 (2005).
[Crossref]

Joulaud, L.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

L. Joulaud, J. Mangeney, J.-M. Lourtioz, P. Crozat, and G. Patriarche “Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime,” Appl. Phys. Lett. 82, 856–8582003.
[Crossref]

Katzenellenbogen, N.

A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
[Crossref]

Keiding, S. R.

Kim, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117–161119 (2006).
[Crossref]

Lampin, J. F.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 m range,” Appl. Phys. Lett. 85, 239–241 (2004).
[Crossref]

Lee, Y.-C.

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

Lin, G.-R.

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

Liu, T.-A.

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

Liu, Tze-An

Tze-An Liu, M. Tani, and Ci-Ling Pan, “THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas,” J. Appl. Phys. 93, 2996–3001 (2003).
[Crossref]

Lloyd-Hughes, J.

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–599 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301–195307 (2005).
[Crossref]

Lourtioz, J.-M.

L. Joulaud, J. Mangeney, J.-M. Lourtioz, P. Crozat, and G. Patriarche “Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime,” Appl. Phys. Lett. 82, 856–8582003.
[Crossref]

Mangeney, J.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

L. Joulaud, J. Mangeney, J.-M. Lourtioz, P. Crozat, and G. Patriarche “Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime,” Appl. Phys. Lett. 82, 856–8582003.
[Crossref]

Matsura, S.

Melloch, M. R.

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[Crossref]

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
[Crossref]

A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
[Crossref]

Mollot, F.

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 m range,” Appl. Phys. Lett. 85, 239–241 (2004).
[Crossref]

Morris, D.

B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials,” Semicond. Sci. Technol. 21, 283–286 (2006).
[Crossref]

Nakashima, S.

Otsuka, N.

A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
[Crossref]

Pan, C.-L.

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

Pan, Ci-Ling

Tze-An Liu, M. Tani, and Ci-Ling Pan, “THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas,” J. Appl. Phys. 93, 2996–3001 (2003).
[Crossref]

Park, S. G.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
[Crossref]

Park, S.-G.

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[Crossref]

Patriarche, G.

L. Joulaud, J. Mangeney, J.-M. Lourtioz, P. Crozat, and G. Patriarche “Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime,” Appl. Phys. Lett. 82, 856–8582003.
[Crossref]

Roux, J.-F.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7,615–623 (2001).
[Crossref]

Sakai, K.

Salem, B.

B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials,” Semicond. Sci. Technol. 21, 283–286 (2006).
[Crossref]

Siders, C. W.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
[Crossref]

Siders, J. L. W.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
[Crossref]

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504–163506 (2005).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 1104–1106 (2005).
[Crossref]

Tani, M.

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

Tze-An Liu, M. Tani, and Ci-Ling Pan, “THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas,” J. Appl. Phys. 93, 2996–3001 (2003).
[Crossref]

M. Tani, S. Matsura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[Crossref]

Taylor, A. J.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
[Crossref]

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 1104–1106 (2005).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504–163506 (2005).
[Crossref]

Vignaud, D.

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 m range,” Appl. Phys. Lett. 85, 239–241 (2004).
[Crossref]

Wang, S. C.

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

Warren, A.C.

A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
[Crossref]

Weiner, A. M.

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
[Crossref]

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[Crossref]

Woodall, J. M.

A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
[Crossref]

Wu, H.-H.

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

Yu, P.Y.

This value is consistent with the values given by P.Y. Yu and M. Cardona, “Fundamentals of Semiconductors,” 2nd Edition, (Springer, 1999) p. 290.

Appl. Opt. (1)

Appl. Phys. Lett (1)

A.C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett 58, 1512–1514 (1991).
[Crossref]

Appl. Phys. Lett. (6)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 1104–1106 (2005).
[Crossref]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett. 87, 193510–193512 (2005).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504–163506 (2005).
[Crossref]

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 m range,” Appl. Phys. Lett. 85, 239–241 (2004).
[Crossref]

L. Joulaud, J. Mangeney, J.-M. Lourtioz, P. Crozat, and G. Patriarche “Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime,” Appl. Phys. Lett. 82, 856–8582003.
[Crossref]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117–161119 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

S.-G. Park, M. R. Melloch, and A. M. Weiner, “Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, 810–819 (1999).
[Crossref]

S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7,615–623 (2001).
[Crossref]

J. Appl. Phys. (2)

Tze-An Liu, M. Tani, and Ci-Ling Pan, “THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas,” J. Appl. Phys. 93, 2996–3001 (2003).
[Crossref]

T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, “Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs,” J. Appl. Phys. 98, 013711–013714 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods (1)

J. P. Biersack and L. G. Haggmark, “A Monte Carlo program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Methods 174, 257 (1980).
[Crossref]

Phys. Rev. B (1)

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301–195307 (2005).
[Crossref]

Semicond. Sci. Technol. (1)

B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, “Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials,” Semicond. Sci. Technol. 21, 283–286 (2006).
[Crossref]

Solid State Commun. (1)

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–599 (2005).
[Crossref]

Other (1)

This value is consistent with the values given by P.Y. Yu and M. Cardona, “Fundamentals of Semiconductors,” 2nd Edition, (Springer, 1999) p. 290.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Terahertz radiation waveforms from Br+-irradiated In0.53Ga0.47As emitters. The solid lines represent the measured waveforms and the dashed lines the calculated waveforms. The carrier lifetime reported on each graph is the carrier lifetime extracted from optical pump-probe differential transmission measurements.

Fig. 2.
Fig. 2.

Normalized spectra of the terahertz waveforms for emitters with different carrier lifetime. Inset: Frequency of peak emitted terahertz power as a function of carrier lifetime. The experimental data are represented by triangles and the values extracted from the model by solid line.

Fig. 3.
Fig. 3.

Bolometer output measured as a function of the average laser power driving the emitter for the photoconductive antennas with different carrier lifetime. The solid curve is the theoretical curve fitted to the data.

Fig. 4.
Fig. 4.

Emitted terahertz power as a function of the carrier lifetime at 0.1 THz (circle), 0.38 THz(triangle), 0.84 THz (diamond) and 1.2 THz (square) computed from time domain measurements with Bolometer detector normalization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

j rec ( t ) ( τ em + τ rec ) exp ( τ ˜ las 2 2 τ ˜ e m 2 t τ ˜ e m ) erfc ( τ ˜ las 2 t τ ˜ e m 2 τ ˜ e m τ ˜ las ) + ( τ e m τ ˜ e m ) exp ( τ ˜ las 2 2 τ rec 2 t τ rec ) erfc ( τ ˜ las 2 + t τ rec 2 τ rec τ ˜ las ) ( τ rec + τ ˜ e m ) exp ( τ ˜ las 2 2 τ e m 2 t τ e m ) erfc ( τ ˜ las 2 + t τ e m 2 τ e m τ ˜ las )

Metrics