Abstract

Third-harmonic generation (THG) imaging of thick samples or large organisms requires TH light to be epicollected through the focusing objective. In this study we first estimate the amount of backward-to-forward TH radiation created by an isolated object as a function of size and spatial frequencies in the object. Theory and model experiments indicate that no significant signal can be epidetected from a (biological) dielectric structure embedded in a transparent medium. In contrast, backward emission is observed from metal nanoparticles where THG is partly a surface effect. We then address the case of an object embedded in a turbid medium. Experiments and Monte Carlo simulations show that epidetection is possible when the absorption mean free path of harmonic light in the medium exceeds its reduced scattering length, and that epicollection efficiency critically depends on the microscope field-of-view even at shallow depths, because backscattered light is essentially diffusive. These observations provide guidelines for optimizing epidetection in third-harmonic, second-harmonic, or CARS imaging of thick tissues.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive effects in coherent anti-Stokes Raman scattering microscopy

Nadia Djaker, David Gachet, Nicolas Sandeau, Pierre-Francois Lenne, and Hervé Rigneault
Appl. Opt. 45(27) 7005-7011 (2006)

Coherent anti-Stokes Raman scattering (CARS) microscopy imaging at interfaces: evidence of interference effects

D. Gachet, F. Billard, N. Sandeau, and H. Rigneault
Opt. Express 15(16) 10408-10420 (2007)

Quantitative analysis of light scattering in polarization-resolved nonlinear microscopy

Hilton B. de Aguiar, Paulina Gasecka, and Sophie Brasselet
Opt. Express 23(7) 8960-8973 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic:multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003)
    [Crossref] [PubMed]
  2. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385, 161–165 (1997)
    [Crossref] [PubMed]
  3. F. Helmchen and W. Denk, “New developments in multiphoton microscopy”, Curr. Opin. Neurobiol. 12, 593–601 (2002)
    [Crossref] [PubMed]
  4. S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, and K. Delaney, “Odor-evoked calcium signals in dendrites of rat mitral cells,” Proc. Nat. Acad. Sci. USA 98, 1230–1234 (2001)
    [Crossref] [PubMed]
  5. M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Real-time imaging of lymphocytes in vivo,” Curr. Opin. Immunol. 15, 372–377 (2003)
    [Crossref] [PubMed]
  6. S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
    [Crossref] [PubMed]
  7. W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
    [PubMed]
  8. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999)
    [Crossref] [PubMed]
  9. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
    [Crossref] [PubMed]
  10. E. Beaurepaire and J. Mertz, “Epifluorescence collection in two-photon microscopy,” Appl. Opt. 41, 5376–5382 (2002)
    [Crossref] [PubMed]
  11. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001)
    [Crossref] [PubMed]
  12. D. Vucinic, T. M. Bartol, and T. J. Sejnowski, “Hybrid reflecting objectives for 0unctional multiphoton microscopy in turbid media,” Opt. Lett. 31, 2447–2449 (2006)
    [Crossref] [PubMed]
  13. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997)
    [Crossref]
  14. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998)
    [Crossref] [PubMed]
  15. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic generation microscopy in biology,” Opt. Express 5 (1999)
    [Crossref] [PubMed]
  16. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
    [Crossref] [PubMed]
  17. D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett. 29, 2881–2883 (2004)
    [Crossref]
  18. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
    [Crossref]
  19. C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003)
    [Crossref] [PubMed]
  20. S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic generation microscopy,” Opt. Express 14, 6178–6187 (2006)
    [Crossref] [PubMed]
  21. J.-X. Cheng and X. S. Xie, “Green’s function formulation for third harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002)
    [Crossref]
  22. L Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000)
    [Crossref]
  23. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001)
    [Crossref]
  24. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005)
    [Crossref]
  25. O. Nadiarnykh, R. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15, 3348–3360 (2007)
    [Crossref] [PubMed]
  26. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1328–1347 (2002)
    [Crossref]
  27. C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
    [Crossref] [PubMed]
  28. R. W. Boyd, Nonlinear optics, 2nd edition, (Academic Press, 2003)
  29. S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y. J. Zhang, H.-L Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231–8242 (2005)
    [Crossref] [PubMed]
  30. D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy”, Opt. Lett. 30, 2134–2136 (2005)
    [Crossref] [PubMed]
  31. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A 253, 358–379 (1959)
    [Crossref]
  32. M. Lippitz, M. A. van Dijkand, and M. Orrit, “Third-harmonic generation from single gold nanoparticules,” Nano Lett. 5, 799–802 (2005)
    [Crossref] [PubMed]
  33. S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “Third-harmonic generation by small clusters in a dielectric medium,” J. Phys. B: At. Mol. Opt. Phys. 39, 4933–4943 (2006)
    [Crossref]
  34. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002)
    [Crossref]
  35. M. H. Niemz, Laser-tissue interactions - Fundamentals and applications - Third Edition, (Springer, 2004)
  36. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Institute Series 5, 102–111 (1989)
  37. C. G. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983)
  38. V. Barzda, C. Greenhalgh, J. Aus-der-Au, and S. Elmore, “Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy,” Opt. Express 13, 8263–8276 (2006)
    [Crossref]
  39. O. G. Clay, A. C. Millard, C. B. Schaffer, J. Aus-Der-Au, P. S. Tsai, J. A. Squier, and D. Kleinfeld, “Spectroscopy of third harmonic generation: evidence for resonances in model compounds and ligated hemoglobin,” J. Opt. Soc. Am. B 23, 932–950 (2006)
    [Crossref]
  40. N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 45, 7005–7011 (2006)
    [Crossref] [PubMed]

2007 (1)

2006 (7)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “Third-harmonic generation by small clusters in a dielectric medium,” J. Phys. B: At. Mol. Opt. Phys. 39, 4933–4943 (2006)
[Crossref]

V. Barzda, C. Greenhalgh, J. Aus-der-Au, and S. Elmore, “Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy,” Opt. Express 13, 8263–8276 (2006)
[Crossref]

O. G. Clay, A. C. Millard, C. B. Schaffer, J. Aus-Der-Au, P. S. Tsai, J. A. Squier, and D. Kleinfeld, “Spectroscopy of third harmonic generation: evidence for resonances in model compounds and ligated hemoglobin,” J. Opt. Soc. Am. B 23, 932–950 (2006)
[Crossref]

S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic generation microscopy,” Opt. Express 14, 6178–6187 (2006)
[Crossref] [PubMed]

D. Vucinic, T. M. Bartol, and T. J. Sejnowski, “Hybrid reflecting objectives for 0unctional multiphoton microscopy in turbid media,” Opt. Lett. 31, 2447–2449 (2006)
[Crossref] [PubMed]

N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 45, 7005–7011 (2006)
[Crossref] [PubMed]

2005 (6)

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy”, Opt. Lett. 30, 2134–2136 (2005)
[Crossref] [PubMed]

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y. J. Zhang, H.-L Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13, 8231–8242 (2005)
[Crossref] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005)
[Crossref]

C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
[Crossref] [PubMed]

M. Lippitz, M. A. van Dijkand, and M. Orrit, “Third-harmonic generation from single gold nanoparticules,” Nano Lett. 5, 799–802 (2005)
[Crossref] [PubMed]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

2004 (3)

S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
[Crossref] [PubMed]

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
[Crossref] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett. 29, 2881–2883 (2004)
[Crossref]

2003 (3)

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Real-time imaging of lymphocytes in vivo,” Curr. Opin. Immunol. 15, 372–377 (2003)
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic:multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003)
[Crossref] [PubMed]

C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003)
[Crossref] [PubMed]

2002 (6)

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002)
[Crossref]

E. Beaurepaire and J. Mertz, “Epifluorescence collection in two-photon microscopy,” Appl. Opt. 41, 5376–5382 (2002)
[Crossref] [PubMed]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1328–1347 (2002)
[Crossref]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002)
[Crossref]

F. Helmchen and W. Denk, “New developments in multiphoton microscopy”, Curr. Opin. Neurobiol. 12, 593–601 (2002)
[Crossref] [PubMed]

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

2001 (3)

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, and K. Delaney, “Odor-evoked calcium signals in dendrites of rat mitral cells,” Proc. Nat. Acad. Sci. USA 98, 1230–1234 (2001)
[Crossref] [PubMed]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001)
[Crossref] [PubMed]

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001)
[Crossref]

2000 (1)

1999 (2)

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic generation microscopy in biology,” Opt. Express 5 (1999)
[Crossref] [PubMed]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999)
[Crossref] [PubMed]

1998 (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998)
[Crossref] [PubMed]

1997 (2)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997)
[Crossref]

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385, 161–165 (1997)
[Crossref] [PubMed]

1989 (1)

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Institute Series 5, 102–111 (1989)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A 253, 358–379 (1959)
[Crossref]

Amblard, F.

S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
[Crossref] [PubMed]

Amigorena, S.

S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
[Crossref] [PubMed]

Aus-der-Au, J.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997)
[Crossref]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002)
[Crossref]

Bartol, T. M.

Barzda, V.

Bavister, B. D.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999)
[Crossref] [PubMed]

Beaurepaire, E.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy”, Opt. Lett. 30, 2134–2136 (2005)
[Crossref] [PubMed]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett. 29, 2881–2883 (2004)
[Crossref]

E. Beaurepaire and J. Mertz, “Epifluorescence collection in two-photon microscopy,” Appl. Opt. 41, 5376–5382 (2002)
[Crossref] [PubMed]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001)
[Crossref] [PubMed]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, and K. Delaney, “Odor-evoked calcium signals in dendrites of rat mitral cells,” Proc. Nat. Acad. Sci. USA 98, 1230–1234 (2001)
[Crossref] [PubMed]

Becker, W.

S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “Third-harmonic generation by small clusters in a dielectric medium,” J. Phys. B: At. Mol. Opt. Phys. 39, 4933–4943 (2006)
[Crossref]

Bohren, C. G.

C. G. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983)

Bonifaz, L.

S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
[Crossref] [PubMed]

Bottinger, E. P.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear optics, 2nd edition, (Academic Press, 2003)

Brakenhoff, G. J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998)
[Crossref] [PubMed]

Brouzés, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

Cahalan, M. D.

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Real-time imaging of lymphocytes in vivo,” Curr. Opin. Immunol. 15, 372–377 (2003)
[Crossref] [PubMed]

Campagnola, P. J.

Cermak, L.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Chaigneau, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001)
[Crossref] [PubMed]

Charpak, S.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001)
[Crossref] [PubMed]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, and K. Delaney, “Odor-evoked calcium signals in dendrites of rat mitral cells,” Proc. Nat. Acad. Sci. USA 98, 1230–1234 (2001)
[Crossref] [PubMed]

Chen, C.-C.

Chen, Y.-C.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002)
[Crossref]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1328–1347 (2002)
[Crossref]

Chu, S.-W.

Clay, O. G.

Combettes, L

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

Condeelis, J. S.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Côté, D.

C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
[Crossref] [PubMed]

Débarre, D.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy”, Opt. Lett. 30, 2134–2136 (2005)
[Crossref] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett. 29, 2881–2883 (2004)
[Crossref]

Delaney, K.

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, and K. Delaney, “Odor-evoked calcium signals in dendrites of rat mitral cells,” Proc. Nat. Acad. Sci. USA 98, 1230–1234 (2001)
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “New developments in multiphoton microscopy”, Curr. Opin. Neurobiol. 12, 593–601 (2002)
[Crossref] [PubMed]

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385, 161–165 (1997)
[Crossref] [PubMed]

Djaker, N.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997)
[Crossref]

Elmore, S.

Evans, C. L

C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
[Crossref] [PubMed]

Fabre, A.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

Fachima, R.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
[Crossref] [PubMed]

Farge, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett. 29, 2881–2883 (2004)
[Crossref]

Fetler, L.

S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
[Crossref] [PubMed]

Frohlich, V. C.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Gachet, D.

Greenhalgh, C.

Helft, J.

S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “New developments in multiphoton microscopy”, Curr. Opin. Neurobiol. 12, 593–601 (2002)
[Crossref] [PubMed]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997)
[Crossref]

Huang, H.-Y.

Huffman, D. R.

C. G. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983)

Hugues, S.

S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
[Crossref] [PubMed]

Huttelmaier, S.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Jacques, S. L.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Institute Series 5, 102–111 (1989)

Keijzer, M.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Institute Series 5, 102–111 (1989)

Kleinfeld, D.

Lacomb, R.

Lee, W.-J.

Lenne, P.-F.

Liao, Y.-H.

Lin, B.-L.

Lin, C. P.

C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
[Crossref] [PubMed]

Lippitz, M.

M. Lippitz, M. A. van Dijkand, and M. Orrit, “Third-harmonic generation from single gold nanoparticules,” Nano Lett. 5, 799–802 (2005)
[Crossref] [PubMed]

Liu, H.-L

Martin, J.-L.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

Mertz, J.

E. Beaurepaire and J. Mertz, “Epifluorescence collection in two-photon microscopy,” Appl. Opt. 41, 5376–5382 (2002)
[Crossref] [PubMed]

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001)
[Crossref]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001)
[Crossref] [PubMed]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, and K. Delaney, “Odor-evoked calcium signals in dendrites of rat mitral cells,” Proc. Nat. Acad. Sci. USA 98, 1230–1234 (2001)
[Crossref] [PubMed]

L Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000)
[Crossref]

Millard, A. C.

Miller, M. J.

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Real-time imaging of lymphocytes in vivo,” Curr. Opin. Immunol. 15, 372–377 (2003)
[Crossref] [PubMed]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002)
[Crossref]

Mohler, W. A.

Moreaux, L

Moreaux, L.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001)
[Crossref]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, and K. Delaney, “Odor-evoked calcium signals in dendrites of rat mitral cells,” Proc. Nat. Acad. Sci. USA 98, 1230–1234 (2001)
[Crossref] [PubMed]

Moulia, B.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett. 29, 2881–2883 (2004)
[Crossref]

Müller, M.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998)
[Crossref] [PubMed]

Nadiarnykh, O.

Niemz, M. H.

M. H. Niemz, Laser-tissue interactions - Fundamentals and applications - Third Edition, (Springer, 2004)

Oheim, M.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001)
[Crossref] [PubMed]

Oleynikov, Y.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Oron, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
[Crossref] [PubMed]

Orrit, M.

M. Lippitz, M. A. van Dijkand, and M. Orrit, “Third-harmonic generation from single gold nanoparticules,” Nano Lett. 5, 799–802 (2005)
[Crossref] [PubMed]

Parker, I.

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Real-time imaging of lymphocytes in vivo,” Curr. Opin. Immunol. 15, 372–377 (2003)
[Crossref] [PubMed]

Pena, A.-M.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

Popruzhenko, S. V.

S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “Third-harmonic generation by small clusters in a dielectric medium,” J. Phys. B: At. Mol. Opt. Phys. 39, 4933–4943 (2006)
[Crossref]

Potma, E. O.

C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
[Crossref] [PubMed]

Prahl, S. A.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Institute Series 5, 102–111 (1989)

Puoris’haag, M.

C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
[Crossref] [PubMed]

Raz, S.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
[Crossref] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A 253, 358–379 (1959)
[Crossref]

Rigneault, H.

Sandeau, N.

Sandre, O.

Schaffer, C. B.

Schanne-Klein, M.-C.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett. 29, 2881–2883 (2004)
[Crossref]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002)
[Crossref]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002)
[Crossref]

Segall, J. E.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Sejnowski, T. J.

Shieh, D.-B.

Silberberg, Y.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
[Crossref] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic generation microscopy in biology,” Opt. Express 5 (1999)
[Crossref] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997)
[Crossref]

Singer, R. H.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002)
[Crossref]

Squier, J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998)
[Crossref] [PubMed]

Squier, J. A.

Squirrell, J. M.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999)
[Crossref] [PubMed]

Sun, C.-K.

Supatto, W.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy”, Opt. Lett. 30, 2134–2136 (2005)
[Crossref] [PubMed]

D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett. 29, 2881–2883 (2004)
[Crossref]

Svoboda, K.

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385, 161–165 (1997)
[Crossref] [PubMed]

Tai, S.-P.

Tal, E.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
[Crossref] [PubMed]

Tank, D. W.

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385, 161–165 (1997)
[Crossref] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

Tsai, P. S.

Tsai, T.-H.

van Dijkand, M. A.

M. Lippitz, M. A. van Dijkand, and M. Orrit, “Third-harmonic generation from single gold nanoparticules,” Nano Lett. 5, 799–802 (2005)
[Crossref] [PubMed]

Volkmer, A.

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1328–1347 (2002)
[Crossref]

Vucinic, D.

Wang, W.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005)
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic:multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003)
[Crossref] [PubMed]

Wei, S. H.

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Real-time imaging of lymphocytes in vivo,” Curr. Opin. Immunol. 15, 372–377 (2003)
[Crossref] [PubMed]

Welch, A. J.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Institute Series 5, 102–111 (1989)

White, J. G.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999)
[Crossref] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005)
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic:multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003)
[Crossref] [PubMed]

Wilson, K. R.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998)
[Crossref] [PubMed]

Wokosin, D. L.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999)
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A 253, 358–379 (1959)
[Crossref]

Wu, P.-C.

Wyckoff, J. B.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Xie, X. S.

C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
[Crossref] [PubMed]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1328–1347 (2002)
[Crossref]

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002)
[Crossref]

Yelin, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
[Crossref] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic generation microscopy in biology,” Opt. Express 5 (1999)
[Crossref] [PubMed]

Yu, C.-H.

Zaretsky, D. F.

S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “Third-harmonic generation by small clusters in a dielectric medium,” J. Phys. B: At. Mol. Opt. Phys. 39, 4933–4943 (2006)
[Crossref]

Zavadil, J.

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Zhang, K. Y. J.

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005)
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic:multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003)
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997)
[Crossref]

Biophys. J. (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005)
[Crossref]

Cancer Res. (1)

W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–88 (2002)
[PubMed]

Curr. Opin. Immunol. (1)

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Real-time imaging of lymphocytes in vivo,” Curr. Opin. Immunol. 15, 372–377 (2003)
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

F. Helmchen and W. Denk, “New developments in multiphoton microscopy”, Curr. Opin. Neurobiol. 12, 593–601 (2002)
[Crossref] [PubMed]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002)
[Crossref]

J. Microsc. (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998)
[Crossref] [PubMed]

J. Neurosci. Methods (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111, 29–37 (2001)
[Crossref] [PubMed]

J. Opt. Soc. Am. B (4)

J. Phys. B: At. Mol. Opt. Phys. (1)

S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, “Third-harmonic generation by small clusters in a dielectric medium,” J. Phys. B: At. Mol. Opt. Phys. 39, 4933–4943 (2006)
[Crossref]

J. Struct. Biol. (1)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147, 3–11 (2004)
[Crossref] [PubMed]

Nano Lett. (1)

M. Lippitz, M. A. van Dijkand, and M. Orrit, “Third-harmonic generation from single gold nanoparticules,” Nano Lett. 5, 799–802 (2005)
[Crossref] [PubMed]

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic:multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003)
[Crossref] [PubMed]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999)
[Crossref] [PubMed]

Nat. Immunol. (1)

S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard, and S. Amigorena, “Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity,” Nat. Immunol. 5, 1235–42 (2004)
[Crossref] [PubMed]

Nat. Methods (1)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3, 47–53 (2006)
[Crossref]

Nature (1)

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385, 161–165 (1997)
[Crossref] [PubMed]

Opt. Commun. (1)

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001)
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Proc. Nat. Acad. Sci. USA (3)

C. L Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-STokes Raman scattering microscopy,” Proc. Nat. Acad. Sci. USA 102, 16807–12 (2005)
[Crossref] [PubMed]

S. Charpak, J. Mertz, E. Beaurepaire, L. Moreaux, and K. Delaney, “Odor-evoked calcium signals in dendrites of rat mitral cells,” Proc. Nat. Acad. Sci. USA 98, 1230–1234 (2001)
[Crossref] [PubMed]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, ”In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,“ Proc. Nat. Acad. Sci. USA 102, 1047–1052 (2005)
[Crossref] [PubMed]

Proc. Royal Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A 253, 358–379 (1959)
[Crossref]

SPIE Institute Series (1)

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Institute Series 5, 102–111 (1989)

Other (3)

C. G. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983)

M. H. Niemz, Laser-tissue interactions - Fundamentals and applications - Third Edition, (Springer, 2004)

R. W. Boyd, Nonlinear optics, 2nd edition, (Academic Press, 2003)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(A) Geometry and notations (see text). (B) Wave vector mismatch in the forward and backward direction. A slab-like sample is shown for illustrative purpose (see discussion).

Fig. 2.
Fig. 2.

Spatial frequency spectrum for an interface (A) perpendicular and (B) parallel to the excitation beam. In both cases, the large backward wave vector mismatch is not efficiently compensated by the sample structure.

Fig. 3.
Fig. 3.

TH emission patterns for a sphere and a thin slab at the focus of a Gaussian beam. (A) Normalized radiation patterns as a function of slab thickness (top) and sphere diameter (bottom). (B1) Slab: Forward (green triangles, right) and backward (red circles, left) emitted power as a function of thickness (NA=0.9). (B2) Sphere: forward (green triangles, right) and backward (red circles, left) emitted power as a function of diameter (NA=0.9). (C) Sphere: ratio of forward/backward emitted power as a function of diameter and excitation N A (semilog plot).

Fig. 4.
Fig. 4.

Forward and backward emitted TH powers from an axially periodic (sine-like) object in a focused Gaussian beam, as a function of the spatial period δe. (A) Forward and backward emission for several NAs. (B) Radiation patterns for periodicities δe=2μm and δe=152nm (NA=0.9).

Fig. 5.
Fig. 5.

Visibility of dielectric and metallic particles in THG microscopy. (A) Sixth-power dependence of the trans-THG signal on dielectric bead size. Squares: signal obtained from the center of individual polystyrene beads embedded in agarose and centered at the beam focus. Plain lines: sixth-power fits. Dotted line: numerical calculation for NA=0.9 and linear indexes of polystyrene (1.57 at 1180 nm and 1.61 at 393 nm). (B) Top: trans- and epi-detected THG images of a transparent gel containing 330-nm polystyrene beads and 150-nm gold particles. Gold particles are visible in the epi image, whereas polystyrene spheres are not. Bottom: profile through the broken lines indicated in the images. Scale bar is 3 μm. Excitation wavelength is 1180 nm.

Fig. 6.
Fig. 6.

Incidence of absorption and scattering on epidetection of backscattered harmonic light and multiphoton-excited fluorescence from a turbid medium. (A1) Detection of backscattered forward-emitted light (THG). (A2) Detection of light from an isotropic source (2PEF). (B) Epidetected fraction of THG and 2PEF as a function of tissue albedo (g=0.92, ls=25μm, NA=0.95, field of view=1000μm, working distance=2mm, sample thickness=2500μm).

Fig. 7.
Fig. 7.

Incidence of the microscope angular acceptance (field of view) on epidetection of THG and 2PEF from a turbid medium. (A) Measured epidetected fraction as a function of slab thickness (symbols and dotted lines), and corresponding Monte Carlo simulations (plain lines) for two different objectives (60×, 0.9NA and 20×, 0.95NA). Simulations assume that ls (400) =25μm and that the angular field of view is clipped to 0.13 rad (half-angle) by the collection optics. (B) Measured epidetected THG and 2PEF signal at the center of the field, as a function of the angular acceptance of the collection optics.

Fig. 8.
Fig. 8.

Trans- and epi-detection of endogenous THG and multiphoton-excited fluorescence from a washed fresh lung tissue sample. Epi-THG imaging is possible only in thick areas, as opposed to epi-fluorescence. Epi/Trans image pairs were acquired simultaneously. THG and fluorescence images were recorded at different locations. Acquisition time, 10 μs/pixel. Scale bar, 50 μm.

Tables (1)

Tables Icon

Table 1. Forward/Backward THG power ratio generated at an interface as a function of excitation NA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( THG ) ( R ) V dV ( I ̂ + k 3 2 ) exp ( ik 3 R r ) 4 π R r P ( 3 ω ) ( r )

Metrics