Abstract

We introduce a simple approach for the efficient generation of tunable narrow-bandwidth picosecond pulses synchronized to broadband femtosecond ones. Second harmonic generation in the presence of large group velocity mismatch between the interacting pulses transfers a large fraction of the energy of a broadband fundamental frequency pulse into a narrowband second harmonic one. Using a periodically poled stoichiometric lithium tantalate crystal coupled to an infrared optical parametric amplifier, we generated 200-nJ pulses with spectral width lower than 8.5 cm-1 and tunability from 720 to 890 nm. Energy scaling and extension of the tuning range are straightforward.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, "Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system," Phys. Rev. Lett. 59, 1597-1600 (1987).
    [CrossRef] [PubMed]
  2. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, "Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses," Opt. Lett. 23, 1594-1596 (1998).
    [CrossRef]
  3. D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods," Rev. Sci. Instrum. 75, 4971-4980 (2004).
    [CrossRef]
  4. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, "Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman," Science 310, 1006-1009 (2005).
    [CrossRef] [PubMed]
  5. G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum 74, 1-18 (2003).
    [CrossRef]
  6. A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, "Coherent vibrational quantum beats as a probe of Langmuir-Blodgett Monolayers," J. Phys. Chem. B 109, 15941-15949 (2005).
    [CrossRef]
  7. M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
    [CrossRef]
  8. S. W. Clark, F. Ö. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26, 1320-1322 (2001).
    [CrossRef]
  9. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, "Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses," Opt. Lett. 23, 1117-1119 (1998).
    [CrossRef]
  10. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated raman spectrograph for the near ultraviolet," Appl. Phys. B 85, 557-564 (2006).
    [CrossRef]
  11. X. Ribeyre, C. Rouyer, F. Raoult, D. Husson, C. Sauteret, and A. Migus, "All-optical programmable shaping of narrow-band nanosecond pulses with picosecond accuracy by use of adapted chirps and quadratic nonlinearities," Opt. Lett. 26, 1173-1175 (2001).
    [CrossRef]
  12. G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
    [CrossRef]
  13. H. Luo, L. Qian, P. Yuan, and H. Zhu, "Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier," Opt. Express 14, 10631-10635 (2006).
    [CrossRef] [PubMed]
  14. S. Shim and R. A. Mathies, "Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman," Appl. Phys. Lett. 89, 121124 (2006).
    [CrossRef]
  15. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  16. K. Moutzouris, F. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, "Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source," Opt. Lett. 31, 1148-1150 (2006).
    [CrossRef] [PubMed]
  17. L. Torner, D. Mazilu, and D. Mihalache, "Walking Solitons in quadratic nonlinear media," Phys. Rev. Lett. 77, 2455-2458 (1996).
    [CrossRef] [PubMed]
  18. F. Baronio, C. De Angelis, M. Marangoni, C. Manzoni, R. Ramponi, and G. Cerullo, "Spectral shift of femtosecond pulses in nonlinear quadratic PPSLT Crystals," Opt. Express 14, 4774-4779 (2006).
    [CrossRef] [PubMed]
  19. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000).
    [CrossRef]
  20. U. Sapaev and D. Reid, "General second-harmonic pulse shaping in grating-engineered quasi-phase-matched nonlinear crystals," Opt. Express 13, 3264-3276 (2005).
    [CrossRef] [PubMed]

2006

2005

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, "Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman," Science 310, 1006-1009 (2005).
[CrossRef] [PubMed]

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, "Coherent vibrational quantum beats as a probe of Langmuir-Blodgett Monolayers," J. Phys. Chem. B 109, 15941-15949 (2005).
[CrossRef]

U. Sapaev and D. Reid, "General second-harmonic pulse shaping in grating-engineered quasi-phase-matched nonlinear crystals," Opt. Express 13, 3264-3276 (2005).
[CrossRef] [PubMed]

2004

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods," Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

2003

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum 74, 1-18 (2003).
[CrossRef]

2001

2000

1998

1996

L. Torner, D. Mazilu, and D. Mihalache, "Walking Solitons in quadratic nonlinear media," Phys. Rev. Lett. 77, 2455-2458 (1996).
[CrossRef] [PubMed]

1993

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1987

P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, "Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system," Phys. Rev. Lett. 59, 1597-1600 (1987).
[CrossRef] [PubMed]

Adler, F.

Arbore, M. A.

Baronio, F.

Benderskii, A. V.

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, "Coherent vibrational quantum beats as a probe of Langmuir-Blodgett Monolayers," J. Phys. Chem. B 109, 15941-15949 (2005).
[CrossRef]

Bordenyuk, A. N.

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, "Coherent vibrational quantum beats as a probe of Langmuir-Blodgett Monolayers," J. Phys. Chem. B 109, 15941-15949 (2005).
[CrossRef]

Boscheron, A. C. L.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Cerullo, G.

Clark, S. W.

De Angelis, C.

De Silvestri, S.

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum 74, 1-18 (2003).
[CrossRef]

Dorchies, F.

Fan, D. Y.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

Fejer, M. M.

Fermann, M.

Galvanauskas, A.

Gilch, P.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated raman spectrograph for the near ultraviolet," Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Guyot-Sionnest, P.

P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, "Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system," Phys. Rev. Lett. 59, 1597-1600 (1987).
[CrossRef] [PubMed]

Harter, D.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
[CrossRef]

Hunt, J. H.

P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, "Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system," Phys. Rev. Lett. 59, 1597-1600 (1987).
[CrossRef] [PubMed]

Husson, D.

Ilday, F. Ö.

Imeshev, G.

Jayathilake, H.

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, "Coherent vibrational quantum beats as a probe of Langmuir-Blodgett Monolayers," J. Phys. Chem. B 109, 15941-15949 (2005).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Kukura, P.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, "Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman," Science 310, 1006-1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods," Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Laimgruber, S.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated raman spectrograph for the near ultraviolet," Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Leitenstorfer, A.

Luo, H.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Malka, V.

Manzoni, C.

Marangoni, M.

Mathies, R. A.

S. Shim and R. A. Mathies, "Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman," Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, "Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman," Science 310, 1006-1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods," Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Mazilu, D.

L. Torner, D. Mazilu, and D. Mihalache, "Walking Solitons in quadratic nonlinear media," Phys. Rev. Lett. 77, 2455-2458 (1996).
[CrossRef] [PubMed]

McCamant, D. W.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, "Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman," Science 310, 1006-1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods," Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Migus, A.

Mihalache, D.

L. Torner, D. Mazilu, and D. Mihalache, "Walking Solitons in quadratic nonlinear media," Phys. Rev. Lett. 77, 2455-2458 (1996).
[CrossRef] [PubMed]

Modena, A.

Moutzouris, K.

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
[CrossRef]

Petralli-Mallow, T. P.

Qian, L.

Qian, L. J.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

Ramponi, R.

Raoult, F.

Reid, D.

Ribeyre, X.

Richter, L. J.

Rouyer, C.

Sapaev, U.

Sauteret, C.

Schachenmayr, H.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated raman spectrograph for the near ultraviolet," Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Schmidt, B.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated raman spectrograph for the near ultraviolet," Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Shen, Y. R.

P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, "Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system," Phys. Rev. Lett. 59, 1597-1600 (1987).
[CrossRef] [PubMed]

Shim, S.

S. Shim and R. A. Mathies, "Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman," Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

Sotier, F.

Stephenson, J. C.

Torner, L.

L. Torner, D. Mazilu, and D. Mihalache, "Walking Solitons in quadratic nonlinear media," Phys. Rev. Lett. 77, 2455-2458 (1996).
[CrossRef] [PubMed]

Träutlein, D.

Wandschneider, D. B.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, "Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman," Science 310, 1006-1009 (2005).
[CrossRef] [PubMed]

Wang, T.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

Wise, F. W.

Xu, G.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

Yoon, S.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, "Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman," Science 310, 1006-1009 (2005).
[CrossRef] [PubMed]

Yuan, P.

Zhu, C. S.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

Zhu, H.

Zhu, H. Y.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

Zinth, W.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated raman spectrograph for the near ultraviolet," Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Appl. Phys. B

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, "A femtosecond stimulated raman spectrograph for the near ultraviolet," Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
[CrossRef]

S. Shim and R. A. Mathies, "Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman," Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, "Coherent vibrational quantum beats as a probe of Langmuir-Blodgett Monolayers," J. Phys. Chem. B 109, 15941-15949 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. Torner, D. Mazilu, and D. Mihalache, "Walking Solitons in quadratic nonlinear media," Phys. Rev. Lett. 77, 2455-2458 (1996).
[CrossRef] [PubMed]

P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, "Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system," Phys. Rev. Lett. 59, 1597-1600 (1987).
[CrossRef] [PubMed]

Rev. Sci. Instrum

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum 74, 1-18 (2003).
[CrossRef]

Rev. Sci. Instrum.

D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods," Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Science

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, "Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman," Science 310, 1006-1009 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). calculated SH bandwidths, as a function of the FF wavelength, for 2.5-cm-long BBO and PPSLT crystals; (b) calculated FF phase-matching bandwidths for the SFG process in the same crystals.

Fig. 2.
Fig. 2.

(a). Calculated SH pulse profile for TL FF pulses with Δk = 0 and peak intensity 1 GW/cm2; (b) same as (a) for Δk = -25000 m-1 and peak intensity 10 GW/cm2; (c) same as (b) for input pulse with a -2640 fs2 negative chirp; (d) SH spectrum corresponding to case (c).

Fig. 3
Fig. 3

(a). Sequence of SH spectra for different poling periods of the PPSLT crystal. (b) zoom of a spectrum for Λ = 17.7 μm; points correspond to experimental values and solid line to a gaussian fit.

Fig. 4.
Fig. 4.

(a). autocorrelations and (b) cross-correlations of the SH pulses exiting the Λ = 17.9 μm PPSLT crystal for TL (blue lines) and negatively chirped (red lines) input pulses.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δk = [ ( k ω ) FF ( k ω ) SH ] Δω = ( 1 v gFF 1 v gSH ) Δω
Δ v SH = 0.886 1 δ L ,
k ( ω 1 ) = k ( ω FF ) + ( k ω ) FF Δω + 1 2 ( 2 k ω 2 ) FF Δω 2 +
k ( ω 2 ) = k ( ω FF ) - ( k ω ) FF Δω + 1 2 ( 2 k ω 2 ) FF Δω 2 +
Δk = k ( ω 1 ) + k ( ω 2 ) k ( ω SH ) ( 2 k ω 2 ) FF Δω 2
Δ v FF = 0.886 1 ( 2 πL 2 k ω 2 FF ) 1 2
j w z k FF '' 2 2 w t 2 + χ ( 2 ) π λ FF n FF VW * e j Δ kz = 0
j v z v t k SH '' 2 2 v t 2 + χ ( 2 ) π λ FF n SH W 2 e j Δ kz = 0

Metrics