Abstract

This work describes a novel approach that adopts numerical operation to suppress the zero-order images of reconstruction in digital holography. The entire process needs only one digital hologram and keeps under control the intensity ratio of the object wave to reference wave in recording procedure. Also the performance of numerical suppression is simple and effective by subtracting the numerical generated intensity of the object and reference waves from the digital hologram. The experimental results demonstrate that the zero-order images of reconstruction can be suppressed completely and represents the satisfactory reconstructed image even if the distribution of the object wave is not uniform. Therefore this approach can simplify the procedure of phase-shifting digital holographic-based scheme involving multiple exposures. Moreover, the investigation of performance using the novel suppression approach is presented for proving the practical feasibility.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, "A new microscopic principle," Nature 161, 777 (1948).
    [CrossRef] [PubMed]
  2. E. N. Leith and J. Upatnieks, "Wavefront reconstruction and communication theory," J. Opt. Soc. Am. 52, 1123 (1962).
    [CrossRef]
  3. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268 (1997).
    [CrossRef] [PubMed]
  4. Y. Takaki, H. Kawai, and H. Ohzu, "Hybrid holographic microscopy free of conjugate and zero-order images," Appl. Opt. 38, 4990 (1990).
    [CrossRef]
  5. E. Cuche, P. Marquet and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070 (2000).
    [CrossRef]
  6. Y. Zhang, Q. Lu, and B. Ge, "Elimination of zero-order diffraction in digital off-axis holography," Opt. Commun. 240, 261 (2004).
    [CrossRef]
  7. T. C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda and Y. Suzuki, "Twin-image elimination experiments for three-dimensional images in optical scanning holography," Opt. Lett. 25, 215 (2000).
    [CrossRef]
  8. T. Kreis and W. P. O. Juptner, "Suppression of the dc term in digital holography," Opt. Eng. 36, 2357 (1997).
    [CrossRef]
  9. B. Javidi and D. Kim, "Three dimensional object recognition by use of single-exposure on-axis digital holography," Opt. Lett. 30, 236 (2005).
    [CrossRef] [PubMed]
  10. J. W. Goodman, Introduction to Fourier Optics I2nd edition (McGraw Hill, New York, 1996).
  11. E. Hecht, Optics, 4th ed. (Addison Wesley, New York, 2002).
  12. T. C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB (Elsevier, New York, 2001).
  13. U. Schnars and W. Juptner, Digital holography-digital hologram recording, numerical reconstruction and related techniques (Springer, New York, 2005).

2005 (1)

2004 (1)

Y. Zhang, Q. Lu, and B. Ge, "Elimination of zero-order diffraction in digital off-axis holography," Opt. Commun. 240, 261 (2004).
[CrossRef]

2000 (2)

1997 (2)

I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268 (1997).
[CrossRef] [PubMed]

T. Kreis and W. P. O. Juptner, "Suppression of the dc term in digital holography," Opt. Eng. 36, 2357 (1997).
[CrossRef]

1990 (1)

1962 (1)

1948 (1)

D. Gabor, "A new microscopic principle," Nature 161, 777 (1948).
[CrossRef] [PubMed]

Cuche, E.

Depeursinge, C.

Gabor, D.

D. Gabor, "A new microscopic principle," Nature 161, 777 (1948).
[CrossRef] [PubMed]

Ge, B.

Y. Zhang, Q. Lu, and B. Ge, "Elimination of zero-order diffraction in digital off-axis holography," Opt. Commun. 240, 261 (2004).
[CrossRef]

Indebetouw, G.

Javidi, B.

Juptner, W. P. O.

T. Kreis and W. P. O. Juptner, "Suppression of the dc term in digital holography," Opt. Eng. 36, 2357 (1997).
[CrossRef]

Kawai, H.

Kim, D.

Kim, T.

Kreis, T.

T. Kreis and W. P. O. Juptner, "Suppression of the dc term in digital holography," Opt. Eng. 36, 2357 (1997).
[CrossRef]

Leith, E. N.

Lu, Q.

Y. Zhang, Q. Lu, and B. Ge, "Elimination of zero-order diffraction in digital off-axis holography," Opt. Commun. 240, 261 (2004).
[CrossRef]

Marquet, P.

Ohzu, H.

Poon, T. C.

Schilling, B. W.

Shinoda, K.

Suzuki, Y.

Takaki, Y.

Upatnieks, J.

Wu, M. H.

Yamaguchi, I.

Zhang, T.

Zhang, Y.

Y. Zhang, Q. Lu, and B. Ge, "Elimination of zero-order diffraction in digital off-axis holography," Opt. Commun. 240, 261 (2004).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Nature (1)

D. Gabor, "A new microscopic principle," Nature 161, 777 (1948).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Zhang, Q. Lu, and B. Ge, "Elimination of zero-order diffraction in digital off-axis holography," Opt. Commun. 240, 261 (2004).
[CrossRef]

Opt. Eng. (1)

T. Kreis and W. P. O. Juptner, "Suppression of the dc term in digital holography," Opt. Eng. 36, 2357 (1997).
[CrossRef]

Opt. Lett. (3)

Other (4)

J. W. Goodman, Introduction to Fourier Optics I2nd edition (McGraw Hill, New York, 1996).

E. Hecht, Optics, 4th ed. (Addison Wesley, New York, 2002).

T. C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB (Elsevier, New York, 2001).

U. Schnars and W. Juptner, Digital holography-digital hologram recording, numerical reconstruction and related techniques (Springer, New York, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Simulation results. (a) inputted image; (b) digital hologram; (c) reconstructed image; (d) Fourier power spectrum of (c); (e) reconstructed image obtained by novel suppression approach, (f) Fourier power spectrum of (e).

Fig. 2.
Fig. 2.

Schematic diagram of the optical setup. SF: spatial filter; PBS: polarized beam splitter; BS: beam splitter.

Fig. 3.
Fig. 3.

Experimental results. (a), (c) holograms acquired by off-axis and in-line digital holographic scheme respectively; (b), (d) reconstructed images obtained by the novel suppression approach and numerical reconstruction from (a), (c).

Fig. 4.
Fig. 4.

The proportion of the Fourier power spectrum of reconstructed zero-order image to object term.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I H = ψ o + ψ R 2 = ψ o 2 + ψ R 2 + ψ o * ψ R + ψ o ψ R *
( I H ψ R 2 ) 2 = ( ψ o 2 + ψ o * ψ R + ψ o ψ R * ) 2
= ψ o 2 ψ o 2 + 2 ψ o 2 ( ψ o * ψ R + ψ o ψ R * ) + ( ψ o * ψ R + ψ o ψ R * ) 2
= ψ o 2 ( 2 I H ψ o 2 ) + ( ψ o ψ R * ) 2 + ( ψ o * ψ R ) 2
ψ O 2 ( I H ψ R 2 ) 2 2 ( I H ψ o 2 2 + ψ R 2 )
ψ O 2 ( I H ψ R 2 ) 2 I H + ψ R 2
ψ O ψ R * + ψ O * ψ R = I H ψ R 2 ( I H ψ R 2 ) 2 I H + ψ R 2
ψ o ξ η = exp ( jkz ) jλz ψ Obj x y exp { jk 2 z [ ( ξ x ) 2 + ( η y ) 2 ] } dxdy
ψ R ξ η = a r exp [ j ( k x ξ + k y η ) ]
ψ o x y = exp ( jkz ) jλz I H ξ η exp { jk 2 z [ ( x ξ ) 2 + ( y η ) 2 ] } dξdη

Metrics