Abstract

Results of investigation of transient two-wave mixing via dynamic population gratings in Yb-doped fibers with saturable absorption are reported. The recorded gratings are characterized by submillisecond formation times and at wavelength λ = 1064 nm need cw recording light power of 1 – 10 mW scale. What is important for different applications, the dynamic gratings were found to be predominantly of a phase type with an admixture of a significantly weaker amplitude component only. As in Er-doped fibers, the amplitude grating component proved to be essentially inferior to the theoretical estimation based on the fiber optical density and saturation power.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Frisken, "Transient Bragg reflection gratings in erbium-doped fiber amplifiers," Opt. Lett. 17, 1776-1778 (1992).
    [CrossRef] [PubMed]
  2. B. Fischer, J. L. Zyskind, J. W. Sulhoff and D. J. DiGiovanni, "Nonlinear wave mixing and induced gratings in erbium-doped fiber amplifiers," Opt. Lett. 18, 2108-2110 (1993).
    [CrossRef] [PubMed]
  3. M. D. Feuer, "Length and power dependence of self-adjusting optical fiber filters," IEEE Photon. Technol. Lett. 10, 1587-1589 (1998).
    [CrossRef]
  4. S. A. Havstad, B. Fischer, A. E. Willner, and M. G. Wickham, "Loop-mirror filters based on saturable-gain or -absorber gratings," Opt. Lett. 24, 1466-1468 (1999).
    [CrossRef]
  5. M. Horowitz, R. Daisy, B. Fischer and J. Zyskind, "Narrow-linewidth, single-mode erbium-doped fibre laser with intracavity wave mixing in saturable absorber," Electron. Lett. 30, 648-649 (1994).
    [CrossRef]
  6. Y. Cheng, J. K. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne "Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter," Opt. Lett. 20, 875-877 (1995).
    [CrossRef] [PubMed]
  7. R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett. 22, 41-43 (1997).
    [CrossRef]
  8. Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
    [CrossRef]
  9. S. Stepanov, E. Hernández, and M. Plata, "Two-wave mixing by means of dynamic Bragg gratings recorded by saturation of absorption in erbium-doped fibers," Opt. Lett. 29, 1327-1329 (2004).
    [CrossRef] [PubMed]
  10. D. García Casillas, S. Stepanov, and M. Plata Sanchez, "Linearizing response of adaptive interferometer based on dynamic grating in erbium-doped fiber with saturable absorption," accepted for publication in Rev. Mex. Fisica (2007).
  11. S. Norcia-Molin, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard and R. Frey, "Two-wave mixing in an erbium-doped fiber amplifier for modulation depth enhancement of optically carried microwave signals," Opt. Lett. 31, 299-301 (2006).
    [CrossRef] [PubMed]
  12. P. C. Becker, N. A. Olsson, and J. R. Simpson"Erbium-Doped Fiber Amplifiers: Fundamentals and Technology" (Academic, San Diego, 1999).
  13. Yu. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, "Dynamic Bragg gratings induced in erbium-doped fiber at phase-modulated beams’ coupling," IEEE J. Quantum Electron. 41, 1176-1180 (2005).
    [CrossRef]
  14. S. Stepanov and E. Hernández Hernández, "Phase contribution to dynamic gratings recorded in Er-doped fiber with saturable absorption," Opt. Commun. 271, 91-95 (2007).
    [CrossRef]
  15. S. Stepanov, A. Fotiadi, and P. Mégret, "Transient two-wave mixing via dynamic phase gratings in Yb-doped fibers with saturable absorption," CLEO’07 Technical Digest, paper CMS2.
  16. S. Stepanov and C. Nuñez Santiago, "Intensity dependence of the transient two-wave mixing by population grating in Er-doped fiber," Opt. Commun. 264, 105-115 (2006).
    [CrossRef]
  17. S. Stepanov and E. Hernández "Observation of spatial migration of excitation in Er-doped optical fiber by means of a population grating technique," Opt. Lett. 30, 1926-1928 (2005).
    [CrossRef] [PubMed]
  18. S. Stepanov, E. Hernández and M. Plata "Two-wave mixing of orthogonally polarized waves via anisotropic dynamic gratings in erbium-doped optical fiber," J. Opt. Soc. Am. B 22, 1161-1167 (2005).
    [CrossRef]

2007 (1)

S. Stepanov and E. Hernández Hernández, "Phase contribution to dynamic gratings recorded in Er-doped fiber with saturable absorption," Opt. Commun. 271, 91-95 (2007).
[CrossRef]

2006 (2)

2005 (3)

2004 (2)

Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
[CrossRef]

S. Stepanov, E. Hernández, and M. Plata, "Two-wave mixing by means of dynamic Bragg gratings recorded by saturation of absorption in erbium-doped fibers," Opt. Lett. 29, 1327-1329 (2004).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

M. D. Feuer, "Length and power dependence of self-adjusting optical fiber filters," IEEE Photon. Technol. Lett. 10, 1587-1589 (1998).
[CrossRef]

1997 (1)

R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett. 22, 41-43 (1997).
[CrossRef]

1995 (1)

1994 (1)

M. Horowitz, R. Daisy, B. Fischer and J. Zyskind, "Narrow-linewidth, single-mode erbium-doped fibre laser with intracavity wave mixing in saturable absorber," Electron. Lett. 30, 648-649 (1994).
[CrossRef]

1993 (1)

1992 (1)

Andrés, M. V.

Yu. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, "Dynamic Bragg gratings induced in erbium-doped fiber at phase-modulated beams’ coupling," IEEE J. Quantum Electron. 41, 1176-1180 (2005).
[CrossRef]

Barmenkov, Yu. O.

Yu. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, "Dynamic Bragg gratings induced in erbium-doped fiber at phase-modulated beams’ coupling," IEEE J. Quantum Electron. 41, 1176-1180 (2005).
[CrossRef]

Cheng, Y.

Daisy, R.

M. Horowitz, R. Daisy, B. Fischer and J. Zyskind, "Narrow-linewidth, single-mode erbium-doped fibre laser with intracavity wave mixing in saturable absorber," Electron. Lett. 30, 648-649 (1994).
[CrossRef]

DiGiovanni, D. J.

Dolfi, D.

Feng, Y.

Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
[CrossRef]

Feuer, M. D.

M. D. Feuer, "Length and power dependence of self-adjusting optical fiber filters," IEEE Photon. Technol. Lett. 10, 1587-1589 (1998).
[CrossRef]

Fischer, B.

Frey, R.

Frisken, S.

Hanna, D. C.

R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett. 22, 41-43 (1997).
[CrossRef]

Havstad, S. A.

Hernández, E.

Hernández Hernández, E.

S. Stepanov and E. Hernández Hernández, "Phase contribution to dynamic gratings recorded in Er-doped fiber with saturable absorption," Opt. Commun. 271, 91-95 (2007).
[CrossRef]

Horowitz, M.

M. Horowitz, R. Daisy, B. Fischer and J. Zyskind, "Narrow-linewidth, single-mode erbium-doped fibre laser with intracavity wave mixing in saturable absorber," Electron. Lett. 30, 648-649 (1994).
[CrossRef]

Huang, Sh.

Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
[CrossRef]

Huignard, J.-P.

Kir’yanov, A. V.

Yu. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, "Dynamic Bragg gratings induced in erbium-doped fiber at phase-modulated beams’ coupling," IEEE J. Quantum Electron. 41, 1176-1180 (2005).
[CrossRef]

Kringlebotn, J. K.

Laming, R. I.

Loh, W. H.

Musha, M.

Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett. 22, 41-43 (1997).
[CrossRef]

Norcia-Molin, S.

Nuñez Santiago, C.

S. Stepanov and C. Nuñez Santiago, "Intensity dependence of the transient two-wave mixing by population grating in Er-doped fiber," Opt. Commun. 264, 105-115 (2006).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett. 22, 41-43 (1997).
[CrossRef]

Payne, D. N.

Plata, M.

Qin, G.

Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
[CrossRef]

Reekie, L.

R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett. 22, 41-43 (1997).
[CrossRef]

Shirakawa, A.

Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
[CrossRef]

Stepanov, S.

Sulhoff, J. W.

Tonda-Goldstein, S.

Trooper, A. C.

R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett. 22, 41-43 (1997).
[CrossRef]

Ueda, K.-I.

Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
[CrossRef]

Wickham, M. G.

Willner, A. E.

Zyskind, J.

M. Horowitz, R. Daisy, B. Fischer and J. Zyskind, "Narrow-linewidth, single-mode erbium-doped fibre laser with intracavity wave mixing in saturable absorber," Electron. Lett. 30, 648-649 (1994).
[CrossRef]

Zyskind, J. L.

Electron. Lett. (1)

M. Horowitz, R. Daisy, B. Fischer and J. Zyskind, "Narrow-linewidth, single-mode erbium-doped fibre laser with intracavity wave mixing in saturable absorber," Electron. Lett. 30, 648-649 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

Yu. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, "Dynamic Bragg gratings induced in erbium-doped fiber at phase-modulated beams’ coupling," IEEE J. Quantum Electron. 41, 1176-1180 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. D. Feuer, "Length and power dependence of self-adjusting optical fiber filters," IEEE Photon. Technol. Lett. 10, 1587-1589 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Sh. Huang, Y. Feng, G. Qin, A. Shirakawa, M. Musha, and K.-I. Ueda "Single frequency ytterbium fiber laser from linear cavity with loop mirror filter," Jpn. J. Appl. Phys. 43, L1379-1381 (2004).
[CrossRef]

Opt. Commun. (2)

S. Stepanov and E. Hernández Hernández, "Phase contribution to dynamic gratings recorded in Er-doped fiber with saturable absorption," Opt. Commun. 271, 91-95 (2007).
[CrossRef]

S. Stepanov and C. Nuñez Santiago, "Intensity dependence of the transient two-wave mixing by population grating in Er-doped fiber," Opt. Commun. 264, 105-115 (2006).
[CrossRef]

Opt. Lett. (8)

R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, "Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning," Opt. Lett. 22, 41-43 (1997).
[CrossRef]

S. Stepanov and E. Hernández "Observation of spatial migration of excitation in Er-doped optical fiber by means of a population grating technique," Opt. Lett. 30, 1926-1928 (2005).
[CrossRef] [PubMed]

S. Norcia-Molin, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard and R. Frey, "Two-wave mixing in an erbium-doped fiber amplifier for modulation depth enhancement of optically carried microwave signals," Opt. Lett. 31, 299-301 (2006).
[CrossRef] [PubMed]

S. Frisken, "Transient Bragg reflection gratings in erbium-doped fiber amplifiers," Opt. Lett. 17, 1776-1778 (1992).
[CrossRef] [PubMed]

B. Fischer, J. L. Zyskind, J. W. Sulhoff and D. J. DiGiovanni, "Nonlinear wave mixing and induced gratings in erbium-doped fiber amplifiers," Opt. Lett. 18, 2108-2110 (1993).
[CrossRef] [PubMed]

Y. Cheng, J. K. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne "Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter," Opt. Lett. 20, 875-877 (1995).
[CrossRef] [PubMed]

S. A. Havstad, B. Fischer, A. E. Willner, and M. G. Wickham, "Loop-mirror filters based on saturable-gain or -absorber gratings," Opt. Lett. 24, 1466-1468 (1999).
[CrossRef]

S. Stepanov, E. Hernández, and M. Plata, "Two-wave mixing by means of dynamic Bragg gratings recorded by saturation of absorption in erbium-doped fibers," Opt. Lett. 29, 1327-1329 (2004).
[CrossRef] [PubMed]

Other (3)

P. C. Becker, N. A. Olsson, and J. R. Simpson"Erbium-Doped Fiber Amplifiers: Fundamentals and Technology" (Academic, San Diego, 1999).

D. García Casillas, S. Stepanov, and M. Plata Sanchez, "Linearizing response of adaptive interferometer based on dynamic grating in erbium-doped fiber with saturable absorption," accepted for publication in Rev. Mex. Fisica (2007).

S. Stepanov, A. Fotiadi, and P. Mégret, "Transient two-wave mixing via dynamic phase gratings in Yb-doped fibers with saturable absorption," CLEO’07 Technical Digest, paper CMS2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental set up utilized in experiments on transient TWM in Yb-doped fibers. Inset shows profiles of the rectangular modulating signal (a), and typical transient TWM responses expected for unshifted amplitude (b) and phase (c) dynamic gratings.

Fig. 2.
Fig. 2.

(a) Fluorescence spectra observed under excitation by the direct light wave R of different input power Pin , mW: 0.8, 6.8 and 15.0 (from the bottom to the top curve, λ = 1064 nm, fiber #1). Inset shows intensity dependence of the fluorescence signal detected at 1025 nm and corresponding theoretical fit. (b) Light power dependence of the fluorescence dark decay (circles) and growth (squares) rates. Solid and dashed lines represent theoretical fits.

Fig. 3.
Fig. 3.

Typical transient TWM signals observed in fiber #1 (a) and in fiber #2 (b) at Umod Uπ/2 (Pin = 5 and 13 mW for fiber #1 and fiber #2 respectively, with averaging over 512 traces).

Fig. 4.
Fig. 4.

(a) Experimental dependences of relative amplitudes of odd (circles) and even (squares) TWM signal components on Umod (fiber #1, Pin = 5 mW). Solid lines present fitting by expected theoretical dependences (Uπ ≈ 7.5 Vp-p). (b) Experimental dependence of relative amplitude of the odd TWM response component on input light power Pin (Umod = 1 Vp-p).

Fig. 5.
Fig. 5.

(a) Decay of the TWM peaks observed at different input light power Pin (fiber #1, Umod = 1.0 Vp-p). (b) Experimental dependence of the TWM peak relaxation rate as a function of Pin . Dashed line shows linear fit for power dependence of the fluorescence growth rate - Fig. 2(b).

Metrics