Abstract

In this work we report on the time and spatial resolved fluorescence of Neodymium ions in LiNbO3 channel waveguides fabricated by Reverse Proton Exchange. The analysis of the fluorescence decay curves obtained with a sub-micrometric resolution has evidenced the presence of a relevant fluorescence quenching inside the channel waveguide. From the comparison between diffusion simulations and the spatial dependence of the 4F3/2 fluorescence decay rate we have concluded that the observed fluorescence quenching can be unequivocally related to the presence of H+ ions in the LiNbO3 lattice. Nevertheless, it turns out that Reverse Proton Exchange guarantees a fluorescence quenching level significantly lower than in similar configurations based on Proton Exchange waveguides. This fluorescence quenching has been found to be accompanied by a relevant red-shift of the 4F3/24I9/2 fluorescence band.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of Lithium Niobate” Phys. Stat. Solidi A 201, 253–283 (2004)
    [Crossref]
  2. P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
    [Crossref]
  3. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett. 41, 607–608 (1982).
    [Crossref]
  4. E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
    [Crossref]
  5. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for highindex waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
    [Crossref]
  6. E. Lallier. “Lasers guides dóndes dans le Niobate de Lithium dope Neodyme,” Universite de Paris-Sud, PhD Thesis (1992).
  7. J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” “Electron. Lett. 27, 1360–1361 (1991).
    [Crossref]
  8. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Riverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838–1842 (1998).
    [Crossref]
  9. A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient Frequency Doubling in Reverse Proton Exchanged Lithium Niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325, (2001).
    [Crossref]
  10. J. Olivares and J.M. Cabrera. “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
    [Crossref]
  11. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura. “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium Niobate,” Opt. Lett. 27, 179–181 (2002).
    [Crossref]
  12. M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)
  13. G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)
  14. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
    [Crossref]
  15. U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
    [Crossref]
  16. D. Jaque, E. Cantelar, and G. Lifante “Lattice micro-modifications induced by Zn difussion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal luminescence,” Appl. Phys. B. DOI: 10.1007/s00340-007-2692-9 (2007).
  17. B. V. Dierold and C. Sandmann. “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B. 78, 363–366 (2004).
    [Crossref]

2006 (1)

U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
[Crossref]

2005 (2)

M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[Crossref]

2004 (2)

B. V. Dierold and C. Sandmann. “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B. 78, 363–366 (2004).
[Crossref]

L. Arizmendi, “Photonic applications of Lithium Niobate” Phys. Stat. Solidi A 201, 253–283 (2004)
[Crossref]

2002 (1)

2001 (1)

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient Frequency Doubling in Reverse Proton Exchanged Lithium Niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325, (2001).
[Crossref]

1998 (2)

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Riverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838–1842 (1998).
[Crossref]

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[Crossref]

1993 (1)

J. Olivares and J.M. Cabrera. “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[Crossref]

1991 (1)

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” “Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

1989 (1)

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

1982 (2)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for highindex waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of Lithium Niobate” Phys. Stat. Solidi A 201, 253–283 (2004)
[Crossref]

Aschieri, P.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[Crossref]

Assanto, G.

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient Frequency Doubling in Reverse Proton Exchanged Lithium Niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325, (2001).
[Crossref]

Baldi, P.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[Crossref]

Bell, M. J. V.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[Crossref]

Busacca, A.C.

G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)

Cabrera, J.M.

J. Olivares and J.M. Cabrera. “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[Crossref]

Caccavale, F.

Cantelar, E.

D. Jaque, E. Cantelar, and G. Lifante “Lattice micro-modifications induced by Zn difussion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal luminescence,” Appl. Phys. B. DOI: 10.1007/s00340-007-2692-9 (2007).

G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)

Catunda, T.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[Crossref]

Cino, A.

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient Frequency Doubling in Reverse Proton Exchanged Lithium Niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325, (2001).
[Crossref]

Cino, A. C.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[Crossref]

Cino, A.C.

M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)

G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)

Conti, C.

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient Frequency Doubling in Reverse Proton Exchanged Lithium Niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325, (2001).
[Crossref]

Cussó, F.

M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)

G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)

Dierold, B. V.

B. V. Dierold and C. Sandmann. “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B. 78, 363–366 (2004).
[Crossref]

Domenech, M.

M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)

G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)

Fedorov, V. A.

Fejer, M. M.

Fujimura, M.

Gonella, F.

Grezes-Besset, C.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Hadi, K. El

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[Crossref]

He, Q.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Jacinto, C.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[Crossref]

Jackel, J. L.

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” “Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for highindex waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

Jaque, D.

U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
[Crossref]

D. Jaque, E. Cantelar, and G. Lifante “Lattice micro-modifications induced by Zn difussion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal luminescence,” Appl. Phys. B. DOI: 10.1007/s00340-007-2692-9 (2007).

Johnson, J. J.

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” “Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

Korkishko, Y. N.

Kurz, J. R.

Lahoz, F.

U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
[Crossref]

Lallier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

E. Lallier. “Lasers guides dóndes dans le Niobate de Lithium dope Neodyme,” Universite de Paris-Sud, PhD Thesis (1992).

Lallo, A. Di

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient Frequency Doubling in Reverse Proton Exchanged Lithium Niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325, (2001).
[Crossref]

Lavín, V.

U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
[Crossref]

Li, M. J.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Lifante, G.

M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)

D. Jaque, E. Cantelar, and G. Lifante “Lattice micro-modifications induced by Zn difussion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal luminescence,” Appl. Phys. B. DOI: 10.1007/s00340-007-2692-9 (2007).

G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)

Martín, I. R.

U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
[Crossref]

Mendoza, U. R. Rodríguez

U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
[Crossref]

Micheli, M. De

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[Crossref]

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Morozova, T. M.

Nunes, L. A. O.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[Crossref]

Olivares, J.

J. Olivares and J.M. Cabrera. “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[Crossref]

Oliveira, S. L.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[Crossref]

Ostrowsky, D. B.

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[Crossref]

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Papuchon, M.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Parameswaran, K. R.

Parisi, A.

M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)

Pelletier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Pocholle, J. P.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for highindex waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

Ródenas, A.

U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
[Crossref]

Roussev, R. V.

Route, R. K.

Sandmann, C.

B. V. Dierold and C. Sandmann. “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B. 78, 363–366 (2004).
[Crossref]

Sanseverino, S. Riva

M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)

G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)

Segato, F.

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for highindex waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

“Electron. Lett. (1)

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” “Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

Appl. Phys. B. (1)

B. V. Dierold and C. Sandmann. “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B. 78, 363–366 (2004).
[Crossref]

Appl. Phys. Lett. (4)

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005).
[Crossref]

J. Olivares and J.M. Cabrera. “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2470 (1993).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for highindex waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

Electron. Lett. (1)

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

High Press. Res. Journal. (1)

U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz, and V. Lavín “High pressure luminescence in Nd doped LiNbO3 crystals,” High Press. Res. Journal. 26, 341–343 (2006)
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Di Lallo, C. Conti, A. Cino, and G. Assanto, “Efficient Frequency Doubling in Reverse Proton Exchanged Lithium Niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325, (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

Materials Science Forum. (1)

M. Domenech, G. Lifante, F. Cussó, A. Parisi, A.C. Cino, and S. Riva Sanseverino, “Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals,” Materials Science Forum. 480–481, 429–436 (2005)

Opt. Eng. (1)

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[Crossref]

Opt. Lett. (1)

Phys. Stat. Solidi A (1)

L. Arizmendi, “Photonic applications of Lithium Niobate” Phys. Stat. Solidi A 201, 253–283 (2004)
[Crossref]

Other (3)

E. Lallier. “Lasers guides dóndes dans le Niobate de Lithium dope Neodyme,” Universite de Paris-Sud, PhD Thesis (1992).

G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino “Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion,” Proc. OWTNM’06, Varese, Italy (2006)

D. Jaque, E. Cantelar, and G. Lifante “Lattice micro-modifications induced by Zn difussion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal luminescence,” Appl. Phys. B. DOI: 10.1007/s00340-007-2692-9 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a).- Nd:LiNbO3 sample with silica mask channel opening. Reference axis used in this work are indicated. (b).- Two dimensional calculation of the proton density in the waveguide as obtained by using the imaginary distance beam propagation method

Fig. 2.
Fig. 2.

- Fluorescence decay curve of the 4F3/2 metastable state of Nd3+ ions in the LiNbO3 bulk and RPE channel waveguide (red and blue points, respectively). Solid lines correspond to a single exponential fit. The spatial location at which each curve was measured is indicated in the graph on the left.

Fig. 3.
Fig. 3.

- 4F3/2 lifetime as a function of both y and x positions ((a) and (b), respectively). Green line corresponds to the proton density along the y and x scan directions.

Fig. 4.
Fig. 4.

(a).- 4F3/24I9/2 micro fluorescence spectrum obtained under continuous wave excitation. (b).- 4F3/24I9/2 emitted intensity as a function of the y position.

Fig. 5.
Fig. 5.

- Energy position of the main luminescence peak within the 4F3/24I9/2 fluorescence band as a function of the y position (red points). Green line is the proton density as obtained from the 2D calculations included in Fig. 1(b).

Metrics