Abstract

Even-order dispersion cancellation, an effect previously identified with frequency-entangled photons, is demonstrated experimentally for the first time with a linear, classical interferometer. A combination of a broad bandwidth laser and a high resolution spectrometer was used to measure the intensity correlations between anti-correlated optical frequencies. Only 14% broadening of the correlation signal is observed when significant material dispersion, enough to broaden the regular interferogram by 4250%, is introduced into one arm of the interferometer.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
    [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  3. W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
    [CrossRef] [PubMed]
  4. V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: beating the standard quantum limit," Science 306, 1330-1336 (2004).
    [CrossRef] [PubMed]
  5. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
    [CrossRef] [PubMed]
  6. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
    [CrossRef] [PubMed]
  7. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer," Phys. Rev. A 45, 6659-6665 (1992).
    [CrossRef] [PubMed]
  8. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
    [CrossRef] [PubMed]
  9. J. D. Franson, "Nonlocal cancellation of dispersion," Phys. Rev. A 45, 3126-3132 (1992).
    [CrossRef] [PubMed]
  10. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  11. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef] [PubMed]
  12. B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601, (2006).
    [CrossRef]
  13. A. F. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography," Opt. Express 9, 610-615 (2001).
    [CrossRef] [PubMed]
  14. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable carrier generation and phase-resolved digital data processing in Optical Coherence Tomography," Appl. Opt. 40, 5787-5790 (2001).
    [CrossRef]
  15. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in Optical Coherence Tomography," Appl. Opt. 42, 3038-3046 (2003).
    [CrossRef] [PubMed]
  16. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, highspeed, Fourier domain optical coherence tomography and methods for dispersion compensation Multimedia," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  17. K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
    [CrossRef]
  18. R. S. Bennink, S. J. Bentley, and R. W. Boyd, " ‘Two-Photon’ Coincidence Imaging with a Classical Source," Phys. Rev. Lett. 89, 113601 (2002).
    [CrossRef] [PubMed]
  19. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
    [CrossRef] [PubMed]
  20. K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
    [CrossRef] [PubMed]
  21. R. Ghosh and L. Mandel, "Observation of nonclassical effects in the interference of two photons," Phys. Rev. Lett. 59, 1903-1905 (1987).
    [CrossRef] [PubMed]
  22. G. Ghosh, "Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses," Appl. Opt. 36, 1540-1546 (1997).
    [CrossRef] [PubMed]

2007 (2)

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

2006 (1)

B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601, (2006).
[CrossRef]

2005 (2)

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

2004 (3)

W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: beating the standard quantum limit," Science 306, 1330-1336 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, highspeed, Fourier domain optical coherence tomography and methods for dispersion compensation Multimedia," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

2003 (3)

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in Optical Coherence Tomography," Appl. Opt. 42, 3038-3046 (2003).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

2002 (2)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, " ‘Two-Photon’ Coincidence Imaging with a Classical Source," Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

2001 (2)

1997 (1)

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

1992 (3)

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer," Phys. Rev. A 45, 6659-6665 (1992).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

J. D. Franson, "Nonlocal cancellation of dispersion," Phys. Rev. A 45, 3126-3132 (1992).
[CrossRef] [PubMed]

1987 (2)

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

R. Ghosh and L. Mandel, "Observation of nonclassical effects in the interference of two photons," Phys. Rev. Lett. 59, 1903-1905 (1987).
[CrossRef] [PubMed]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Banaszek, K.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, " ‘Two-Photon’ Coincidence Imaging with a Classical Source," Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, " ‘Two-Photon’ Coincidence Imaging with a Classical Source," Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Blakestad, R. B.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Boppart, S. A.

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in Optical Coherence Tomography," Appl. Opt. 42, 3038-3046 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Bouma, B.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Boyd, R. W.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, " ‘Two-Photon’ Coincidence Imaging with a Classical Source," Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Britton, J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Chiao, R. Y.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer," Phys. Rev. A 45, 6659-6665 (1992).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

Chiaverini, J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

de Boer, J. F.

Drexler, W.

W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Duker, J.

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601, (2006).
[CrossRef]

Fercher, A. F.

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Franson, J.D.

J. D. Franson, "Nonlocal cancellation of dispersion," Phys. Rev. A 45, 3126-3132 (1992).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Ghosh, G.

Ghosh, R.

R. Ghosh and L. Mandel, "Observation of nonclassical effects in the interference of two photons," Phys. Rev. Lett. 59, 1903-1905 (1987).
[CrossRef] [PubMed]

Gilchrist, A.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: beating the standard quantum limit," Science 306, 1330-1336 (2004).
[CrossRef] [PubMed]

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Hume, D. B.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Itano, W. M.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Jost, J. D.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Karamata, B.

Knill, E.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Ko, T.

Kowalczyk, A.

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer," Phys. Rev. A 45, 6659-6665 (1992).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

Langer, C.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Lasser, T.

Leibfried, D.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: beating the standard quantum limit," Science 306, 1330-1336 (2004).
[CrossRef] [PubMed]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: beating the standard quantum limit," Science 306, 1330-1336 (2004).
[CrossRef] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

Mandel, L.

R. Ghosh and L. Mandel, "Observation of nonclassical effects in the interference of two photons," Phys. Rev. Lett. 59, 1903-1905 (1987).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Marks, D. L.

Nasr, M. B.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Nelson, J. S.

Oldenburg, A. L.

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Ozeri, R.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Pregnell, K. L.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Prevedel, R.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Pryde, G. J.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Radunsky, A. S.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Reichle, R.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Resch, K. J.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Reynolds, J. J.

Saleh, B. E. A.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Saxer, C. E.

Seidelin, S.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Shapiro, J. H.

B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601, (2006).
[CrossRef]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Srinivasan, V.

Steinberg, A. M.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer," Phys. Rev. A 45, 6659-6665 (1992).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

Sticker, M.

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Tearney, G. J.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Teich, M. C.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Walmsley, I. A.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Wineland, D. J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Wojtkowski, M.

Zawadzki, R.

Appl. Opt. (3)

J. Biomed. Opt. (1)

W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Nature (1)

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, "Creation of a six-atom Schrödinger cat state," Nature 438, 639-642 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (4)

B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601, (2006).
[CrossRef]

J. D. Franson, "Nonlocal cancellation of dispersion," Phys. Rev. A 45, 3126-3132 (1992).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer," Phys. Rev. A 45, 6659-6665 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of dispersion-canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, " ‘Two-Photon’ Coincidence Imaging with a Classical Source," Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-resolution ghost image and ghost diffraction experiments with thermal light," Phys. Rev. Lett. 94, 183602 (2005).
[CrossRef] [PubMed]

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. OBrien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

R. Ghosh and L. Mandel, "Observation of nonclassical effects in the interference of two photons," Phys. Rev. Lett. 59, 1903-1905 (1987).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (1)

V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: beating the standard quantum limit," Science 306, 1330-1336 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Dispersion cancellation interferometry in a (a) Two-photon interferometer using frequency-entangled photon pairs [7, 8] and (b) a white-light Mach-Zehnder interferometer with frequency-correlated detection. These interferometers and their expected output signals are described in the text. Coinc. is coincidence detection; S describes a function of the output from the spectrometers. (c) Experimental realization. A broadband laser is the source for a fibre-based two-path (Michelson) interferometer. The setup uses a 50/50 beamsplitter (FC 50:50), polarization controllers (PC), collimating lenses (CL), neutral-density filters (F), two BK7 prisms for dispersion control (DC), a translation stage (TS), mirrors (M), and a spectrometer. The spectrometer contains a CL, a diffraction grating (DG), and focusing lens (FL).

Fig. 2.
Fig. 2.

Experimental Data. (a) & (b) Total intensity, as measured by summing the intensities measured at each frequency by the spectrometer, versus motor position with 0 and two passes through (16.800±0.009)mm of BK7 glass in the sample arm of the interferometer, respectively. (c) & (d) S versus motor position with no BK7 and 16.8mm of BK7 in the sample arm. In (e) & (f), the data from (c) & (d) have been subject to a Fourier low-pass filter to remove rapidly oscillating terms. The solid curves are Gaussian fits. These data show that S broadens by only about 14% by addition of the glass while the standard intensity interference pattern is broadened by 4250%.

Fig. 3.
Fig. 3.

Performance of classical dispersion cancellation. (a) The width of the interference patterns (total intensity, open circle; S, solid circle), as measured by translation stage displacement, versus the thickness of the glass traversed by the beam, i.e., twice the glass thickness. The inset expands the y-axis to show the almost constant width of S over the whole range of glass thicknesses. (b) The shift in the centre of the interference pattern versus the thickness of the glass. As discussed in the text, these data show that the interference pattern is displaced by the group delay.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ = dδωA ( ω 0 + δω ) ω 0 + δω 1 ω 0 δω 2 ,
k M ( ω ) k ( ω 0 ) + dk | ω 0 δω + 1 2 d 2 k d ω 2 | ω 0 δ ω 2 + ,
C ( Δ ) dδω A ( ω 0 + δω ) 2 { 1 cos [ 2 δω ( L + Δ ) c 2 L dk δω ] } .
I a ( ω , Δ ) = I ( ω ) cos 2 [ ( Δ + L ) ω c ϕ M ( ω ) 2 ]
I a ( ω , Δ ) = I ( ω ) sin 2 [ ( Δ + L ) ω c ϕ M ( ω ) 2 ] .
S ( Δ ) = dδω I a ( ω 0 + δω ) I b ( ω 0 δω )
S ( Δ ) = 1 2 dδω [ I ( ω 0 + δω ) ] 2 { 1 1 2 cos [ 2 δω ( L + Δ ) c 2 L dk δω ] 1 2 cos [ 2 ω 0 ( L + Δ ) c + 2 L k 0 + L d 2 k d ω 2 ( δω ) 2 ] }

Metrics