Abstract

This paper presents an in-line, short cavity Fabry-Perot fiber optic strain sensor. A short air cavity inside a single-mode fiber is created by the fusion splicing of appropriately micro machined fiber tips. A precise tuning of the cavity length is introduced and used for the setting of the sensor static characteristics within the quasi-linear range around a quadrature point, which significantly simplifies signal processing. Sensor insertion losses achieved by short cavity design and optimized fusion splicing proved to be below 1 dB. Low insertion loss allows for effective cascading of the proposed strain sensors into a quasi-distributed sensor array. A practical 10-point quasi-distributed strain sensor array was demonstrated in practice, where each in-line sensor was tuned to the same operating point in the static characteristics, thus allowing for simple interrogation of the sensor array by using standard telecommunication OTDR. In addition, precise tuning of the short cavity Fabry Perot sensor was applied for an effective compensation of temperature-induced strain errors and for an increase in the unambiguous measuring range, while improving the overall linearity of the sensor system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao and S. Huang, "Applications of Fiber Optic Sensors," in Fiber Optic Sensors, F.T.S. Yu and S. Yin eds. (Marcel Dekker, Inc., New York, Basel, 2002).
  2. M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, "Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with < 50 pm displacement resolution using three-wavelength digital phase demodulation," Opt. Express 8, 475-480 (2001).
    [CrossRef] [PubMed]
  3. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, "Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors," Opt. Lett. 16, 273-275 (1991)
    [CrossRef] [PubMed]
  4. C. E. Lee and H. F. Taylor, "Interferometric optical fiber sensors using internal mirrors," Electron. Lett. 24, 193-194 (1988).
    [CrossRef]
  5. M. N. Inci, S. R. Kidd, J. S. Barton, and J. D. C. Jones, "Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings," Meas. Sci. Technol. 3, 678-684 (1992).
    [CrossRef]
  6. G. P. Carman, K. Murphy, C. A. Schmidt, and J. Elmore, "Extrinsic Fabry-Perot interferometer sensor survivability during mechanical fatigue cycling," Proc. SEM Spring Conference on Exp. Mech., Dearborn, Mich., 1-9 (1993).
  7. J. S. Sirkis,  et al, "In-line fiber etalon for strain measurement," Opt. Lett. 22, 1973-1975 (1993).
    [CrossRef]
  8. D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-718 (1977).
  9. J. T. Verdeyen, Laser electronics (Prentice Hall, 1995), Chap. 3.
  10. E. Cibula and D. Donlagic, "Miniature fiber-optic pressure sensor with a polymer diaphragm," Appl. Opt. 14, 2736-2744 (2005).
    [CrossRef]
  11. I. Sirotic and D. Donlagic, "System for precise balancing and controlled unbalancing of fiber-optic interferometers," Appl. Opt. 41, 4471-4476 (2002).
    [CrossRef] [PubMed]
  12. G. B. Hocker, "Fiber-optic sensing of pressure and temperature," Appl. Opt. 18, 1445-1460 (1979).
    [CrossRef] [PubMed]

2005

E. Cibula and D. Donlagic, "Miniature fiber-optic pressure sensor with a polymer diaphragm," Appl. Opt. 14, 2736-2744 (2005).
[CrossRef]

2002

2001

1993

J. S. Sirkis,  et al, "In-line fiber etalon for strain measurement," Opt. Lett. 22, 1973-1975 (1993).
[CrossRef]

1992

M. N. Inci, S. R. Kidd, J. S. Barton, and J. D. C. Jones, "Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings," Meas. Sci. Technol. 3, 678-684 (1992).
[CrossRef]

1991

1988

C. E. Lee and H. F. Taylor, "Interferometric optical fiber sensors using internal mirrors," Electron. Lett. 24, 193-194 (1988).
[CrossRef]

1979

1977

D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-718 (1977).

Barton, J. S.

M. N. Inci, S. R. Kidd, J. S. Barton, and J. D. C. Jones, "Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings," Meas. Sci. Technol. 3, 678-684 (1992).
[CrossRef]

Cibula, E.

E. Cibula and D. Donlagic, "Miniature fiber-optic pressure sensor with a polymer diaphragm," Appl. Opt. 14, 2736-2744 (2005).
[CrossRef]

Claus, R. O.

Donlagic, D.

E. Cibula and D. Donlagic, "Miniature fiber-optic pressure sensor with a polymer diaphragm," Appl. Opt. 14, 2736-2744 (2005).
[CrossRef]

I. Sirotic and D. Donlagic, "System for precise balancing and controlled unbalancing of fiber-optic interferometers," Appl. Opt. 41, 4471-4476 (2002).
[CrossRef] [PubMed]

Fürstenau, N.

Gunther, M. F.

Hocker, G. B.

Inci, M. N.

M. N. Inci, S. R. Kidd, J. S. Barton, and J. D. C. Jones, "Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings," Meas. Sci. Technol. 3, 678-684 (1992).
[CrossRef]

Jones, J. D. C.

M. N. Inci, S. R. Kidd, J. S. Barton, and J. D. C. Jones, "Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings," Meas. Sci. Technol. 3, 678-684 (1992).
[CrossRef]

Kidd, S. R.

M. N. Inci, S. R. Kidd, J. S. Barton, and J. D. C. Jones, "Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings," Meas. Sci. Technol. 3, 678-684 (1992).
[CrossRef]

Lee, C. E.

C. E. Lee and H. F. Taylor, "Interferometric optical fiber sensors using internal mirrors," Electron. Lett. 24, 193-194 (1988).
[CrossRef]

Marcuse, D.

D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-718 (1977).

Matthias, M.

Melz, T.

Murphy, K. A.

Schmidt, M.

Sirkis, J. S.

J. S. Sirkis,  et al, "In-line fiber etalon for strain measurement," Opt. Lett. 22, 1973-1975 (1993).
[CrossRef]

Sirotic, I.

Taylor, H. F.

C. E. Lee and H. F. Taylor, "Interferometric optical fiber sensors using internal mirrors," Electron. Lett. 24, 193-194 (1988).
[CrossRef]

Vengsarkar, A. M.

Werther, B.

Appl. Opt.

Bell Syst. Tech. J.

D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-718 (1977).

Electron. Lett.

C. E. Lee and H. F. Taylor, "Interferometric optical fiber sensors using internal mirrors," Electron. Lett. 24, 193-194 (1988).
[CrossRef]

Meas. Sci. Technol.

M. N. Inci, S. R. Kidd, J. S. Barton, and J. D. C. Jones, "Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings," Meas. Sci. Technol. 3, 678-684 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Y. J. Rao and S. Huang, "Applications of Fiber Optic Sensors," in Fiber Optic Sensors, F.T.S. Yu and S. Yin eds. (Marcel Dekker, Inc., New York, Basel, 2002).

G. P. Carman, K. Murphy, C. A. Schmidt, and J. Elmore, "Extrinsic Fabry-Perot interferometer sensor survivability during mechanical fatigue cycling," Proc. SEM Spring Conference on Exp. Mech., Dearborn, Mich., 1-9 (1993).

J. T. Verdeyen, Laser electronics (Prentice Hall, 1995), Chap. 3.

Supplementary Material (1)

» Media 1: MOV (176 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

In-line optical fiber strain sensor

Fig. 2.
Fig. 2.

Quasi-linear range around quadrature point of FPI response

Fig. 3.
Fig. 3.

Interference contrast of the FP cavity vs. cavity length L.

Fig. 4.
Fig. 4.

Strain sensor fabrication procedure

Fig. 5.
Fig. 5.

Histogram of transmission losses for 30 produced strain sensor samples

Fig. 6.
Fig. 6.

Enlarged photograph of the strain sensor

Fig. 7.
Fig. 7.

Reflectivity of the sensor vs. strain

Fig. 8.
Fig. 8.

The response to quasi-static strain for a.) optical fiber strain sensor and b.) for resistance strain gauges

Fig. 9.
Fig. 9.

Quasi-distributed network of strain sensors

Fig. 10.
Fig. 10.

OTDR trace of quasi-distributed network of strain sensors: odd sensors are exposed to negative strain of -2500 μm/m and even sensors to positive strain of +2500 μm/m

Fig. 11.
Fig. 11.

(176 KB) Movie of strain sensor response using OTDR interrogation [Media 1]

Fig. 12.
Fig. 12.

System for dual-wavelength strain sensor interrogation

Fig. 13.
Fig. 13.

The reflected spectrum of tuned sensor for dual-wavelength interrogation

Fig. 14.
Fig. 14.

Measured characteristic of the strain sensor using dual-wavelength interrogation

Fig. 15.
Fig. 15.

Temperature compensated strain sensor

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R FP = A + 2 B cos ϕ
ϕ = 4 π λ L
A = R 1 + ξ ( 1 R 1 ) 2 R 2
B = ξ R 1 R 2 ( 1 R 1 )
ξ ( L ) = ( 2 w 0 w ( L ) w 0 2 + w 2 ( L ) ) 2
w ( L ) = w 0 1 + ( λ π w 0 2 2 L ) 2
Δ ϕ = 4 π λ ΔL = 4 π λ εL
L = λ 8 ε max
V = 2 B A = 2 ξ R 1 R 2 ( 1 R 1 ) R 1 + ξ ( 1 R 1 ) 2 R 2
α ( dB ) = 10 log 1 ξ ( 1 R 1 ) ( 1 R 2 )
R C = R M t m ( 1 R M ) 2

Metrics