Abstract

We have analyzed the linearity performance of analog fiber-optic links based on electroabsorption modulators (EAM) operating at high optical power. The negative feedback caused by photocurrent generation improves the modulator linearity in the gain saturation regime. In the absence of laser relative intensity noise (RIN), the link spur-free dynamic range (SFDR) increases with the power of four-thirds of the input optical power after gain saturation occurs. A multi-octave SFDR of more than 135 dB/Hz2/3 has been found to be achievable with sufficiently high power.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Bridges, U. V. Cummings, and J. H. Schaffner, "Linearized modulators for analog photonic links," in MWP ’96 Technical Digest, International Topical Meeting on Microwave Photonics, (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 61-64.
  2. G. E. Betts, X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, "Gain limit in analog links using electroabsorption modulators," IEEE Photon. Technol. Lett. 18, 2065-2067 (2006).
    [CrossRef]
  3. C. H. CoxIII, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 52, 906-920 (2006).
    [CrossRef]
  4. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge Univ. Press, 1998), Chap. 14.
  5. R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
    [CrossRef]
  6. K. J. Williams, L. T. Nichols, and R. D. Esman, "Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link," IEEE J. Lightwave Technol. 16, 192-199 (1998).
    [CrossRef]
  7. E. I. Ackerman, "Broad-band linearization of a Mach-Zehnder electrooptic modulator," IEEE Trans. Microwave Theory Tech. 47, 2271-2279 (1999).
    [CrossRef]
  8. P. K. L. Yu, I. Shubin, X. B. Xie, Y. Zhuang, A. J. X. Chen, and W. S. C. Chang, "Transparent ROF link using EA modulators," in MWP ’05 Technical Digest, International Topical Meeting on Microwave Photonics, (Institute of Electrical and Electronics Engineers, Seoul, 2005), pp. 21-24.

2006

G. E. Betts, X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, "Gain limit in analog links using electroabsorption modulators," IEEE Photon. Technol. Lett. 18, 2065-2067 (2006).
[CrossRef]

C. H. CoxIII, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 52, 906-920 (2006).
[CrossRef]

1999

E. I. Ackerman, "Broad-band linearization of a Mach-Zehnder electrooptic modulator," IEEE Trans. Microwave Theory Tech. 47, 2271-2279 (1999).
[CrossRef]

1998

K. J. Williams, L. T. Nichols, and R. D. Esman, "Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link," IEEE J. Lightwave Technol. 16, 192-199 (1998).
[CrossRef]

1996

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
[CrossRef]

Ackerman, E. I.

C. H. CoxIII, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 52, 906-920 (2006).
[CrossRef]

E. I. Ackerman, "Broad-band linearization of a Mach-Zehnder electrooptic modulator," IEEE Trans. Microwave Theory Tech. 47, 2271-2279 (1999).
[CrossRef]

Betts, G. E.

G. E. Betts, X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, "Gain limit in analog links using electroabsorption modulators," IEEE Photon. Technol. Lett. 18, 2065-2067 (2006).
[CrossRef]

C. H. CoxIII, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 52, 906-920 (2006).
[CrossRef]

Chang, W. S. C.

G. E. Betts, X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, "Gain limit in analog links using electroabsorption modulators," IEEE Photon. Technol. Lett. 18, 2065-2067 (2006).
[CrossRef]

Cox, C. H.

C. H. CoxIII, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 52, 906-920 (2006).
[CrossRef]

Esman, R. D.

K. J. Williams, L. T. Nichols, and R. D. Esman, "Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link," IEEE J. Lightwave Technol. 16, 192-199 (1998).
[CrossRef]

Liu, Y. Z.

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
[CrossRef]

Nichols, L. T.

K. J. Williams, L. T. Nichols, and R. D. Esman, "Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link," IEEE J. Lightwave Technol. 16, 192-199 (1998).
[CrossRef]

Pappert, S. A.

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
[CrossRef]

Prince, J. L.

C. H. CoxIII, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 52, 906-920 (2006).
[CrossRef]

Shubin, I.

G. E. Betts, X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, "Gain limit in analog links using electroabsorption modulators," IEEE Photon. Technol. Lett. 18, 2065-2067 (2006).
[CrossRef]

Sun, C. K.

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
[CrossRef]

Welstand, R. B.

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
[CrossRef]

Williams, K. J.

K. J. Williams, L. T. Nichols, and R. D. Esman, "Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link," IEEE J. Lightwave Technol. 16, 192-199 (1998).
[CrossRef]

Xie, X. B.

G. E. Betts, X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, "Gain limit in analog links using electroabsorption modulators," IEEE Photon. Technol. Lett. 18, 2065-2067 (2006).
[CrossRef]

Yu, P. K. L.

G. E. Betts, X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, "Gain limit in analog links using electroabsorption modulators," IEEE Photon. Technol. Lett. 18, 2065-2067 (2006).
[CrossRef]

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
[CrossRef]

Zhu, J. T.

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
[CrossRef]

IEEE J. Lightwave Technol.

K. J. Williams, L. T. Nichols, and R. D. Esman, "Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link," IEEE J. Lightwave Technol. 16, 192-199 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

G. E. Betts, X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, "Gain limit in analog links using electroabsorption modulators," IEEE Photon. Technol. Lett. 18, 2065-2067 (2006).
[CrossRef]

R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, "Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications," IEEE Photon. Technol. Lett. 8, 1540-1542 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. H. CoxIII, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microwave Theory Tech. 52, 906-920 (2006).
[CrossRef]

E. I. Ackerman, "Broad-band linearization of a Mach-Zehnder electrooptic modulator," IEEE Trans. Microwave Theory Tech. 47, 2271-2279 (1999).
[CrossRef]

Other

P. K. L. Yu, I. Shubin, X. B. Xie, Y. Zhuang, A. J. X. Chen, and W. S. C. Chang, "Transparent ROF link using EA modulators," in MWP ’05 Technical Digest, International Topical Meeting on Microwave Photonics, (Institute of Electrical and Electronics Engineers, Seoul, 2005), pp. 21-24.

T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge Univ. Press, 1998), Chap. 14.

W. B. Bridges, U. V. Cummings, and J. H. Schaffner, "Linearized modulators for analog photonic links," in MWP ’96 Technical Digest, International Topical Meeting on Microwave Photonics, (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 61-64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

An equivalent circuit model of EAM used in an analog fiber-optic link.

Fig. 2.
Fig. 2.

Negative feedback system formed by the effect of photo-generated current on EAM circuit in an analog fiber-optic link configuration. The black and orange lines correspond to electrical and optical transmissions, respectively.

Fig. 3.
Fig. 3.

Calculated link output noise floor and multi-octave IIP3 as a function of input optical power. Laser RIN noise is not included. Low power EAM IIP3 of 20 dBm is assumed.

Fig. 4.
Fig. 4.

Calculated RF link gain, multi-octave link OIP3 and SFDR dependence on input optical power. Conditions and parameter values in the calculation are the same as Fig. 3.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

v M = v S ( R S + R M ) η M P L t I t P [ T ( V B ) T ( V B + v M ) ]
g ( v IN fv OUT ) = v OUT
f = ( R S + R M ) η M 2 η D R D t O
dT e dV IN = 2 dT dV M 1 P L t I t P η M ( R S + R M ) dT dV M
d 2 T e d V IN 2 = 4 d 2 T d V M 2 ( 1 P L t I t P η M ( R S + R M ) dT dV M ) 3
d 3 T e d V IN 3 = 8 d 3 T d V M 3 ( 1 P L t I t P η M ( R S + R M ) dT dV M ) + 24 P L t I t P η M ( R S + R M ) ( d 2 T d V M 2 ) 2 ( 1 P L t I t P η M ( R S + R M ) dT dV M ) 5
k = 1 1 P L t I t P η M ( R S + R M ) dT dV M = 1 + 1 P L t I t P η M ( R S + R M ) π 2 V π
IIP 2 ( dT dV d 2 T d V 2 ) 2 and IIP 3 dT dV d 3 T d V 3

Metrics