Abstract

The availability of fluorescence standards is necessary in the development of systems and methods for fluorescence imaging. In this study, two approaches for developing diffuse fluorescence materials to be used as standards or phantoms in diffuse fluorescent tomography applications were investigated. Specifically, silicone rubber and polyester casting resin were used as base materials, and silicone pigments or TiO2/ India Ink were added respectively to vary the optical properties. Characterization of the optical properties achieved was performed using time-resolved methods. Subsequently, different near-infrared fluorochromes were examined for imparting controlled and stable fluorescence properties. It was determined that hydrophobic fluorophores (IR 676 and IR 780 Iodide) suspended in dichloromethane and hydrophilic fluorophores (Cy5.5 and AF 750) suspended in methanol produced diffusive silicone and resin fluorescent materials, respectively. However only the hydrophobic fluorophores embedded within silicone resulted in the construction of a material with the characteristics of a standard, i.e. stability of fluorescence intensity with time and a linear dependence of normalized fluorescence intensity to fluorophore concentration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Herschman, "Molecular imaging: looking at problems, seeing solutions," Science 302, 605-8 (2003).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef] [PubMed]
  3. M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Disease Markers 19, 107-121 (2003).
  4. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Natl Acad. Sci. USA 99, 9619-9624 (2002).
    [CrossRef] [PubMed]
  5. J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
    [CrossRef] [PubMed]
  6. H. B. Jiang, S. Ramesh, and M. Bartlett, "Combined optical and fluorescence imaging for breast cancer detection and diagnosis," Crit. Rev. Biomed. Eng. 28, 371-375 (2000).
    [PubMed]
  7. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005).
    [CrossRef] [PubMed]
  8. R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
    [CrossRef] [PubMed]
  9. A. D. Klose and A. H. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Lett. 28, 1019-1021 (2003).
    [CrossRef] [PubMed]
  10. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
    [CrossRef]
  11. U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
    [CrossRef] [PubMed]
  12. M. Firbank and D. Delpy, "A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
    [CrossRef]
  13. T. Moffitt, Y. Chen, and S. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt. 11, 041103 (2006).
    [CrossRef] [PubMed]
  14. M. Niedre, G. Turner, and V. Ntziachristos, "Time-resolved imaging of optical coefficients through murine chest cavities," J. Biomed. Opt.in press (2006).
    [CrossRef]
  15. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  16. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
    [CrossRef] [PubMed]
  17. V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized born approximation," Opt. Lett. 26, 893-895 (2001).
    [CrossRef]
  18. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio." IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
    [CrossRef] [PubMed]

2006

T. Moffitt, Y. Chen, and S. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt. 11, 041103 (2006).
[CrossRef] [PubMed]

M. Niedre, G. Turner, and V. Ntziachristos, "Time-resolved imaging of optical coefficients through murine chest cavities," J. Biomed. Opt.in press (2006).
[CrossRef]

2005

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio." IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005).
[CrossRef] [PubMed]

2003

H. R. Herschman, "Molecular imaging: looking at problems, seeing solutions," Science 302, 605-8 (2003).
[CrossRef] [PubMed]

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Disease Markers 19, 107-121 (2003).

A. D. Klose and A. H. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Lett. 28, 1019-1021 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

2002

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Natl Acad. Sci. USA 99, 9619-9624 (2002).
[CrossRef] [PubMed]

2001

2000

H. B. Jiang, S. Ramesh, and M. Bartlett, "Combined optical and fluorescence imaging for breast cancer detection and diagnosis," Crit. Rev. Biomed. Eng. 28, 371-375 (2000).
[PubMed]

1997

J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
[CrossRef] [PubMed]

1993

M. Firbank and D. Delpy, "A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

1989

Achilefu, S.

Barbour, R. L.

J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
[CrossRef] [PubMed]

Bartlett, M.

H. B. Jiang, S. Ramesh, and M. Bartlett, "Combined optical and fluorescence imaging for breast cancer detection and diagnosis," Crit. Rev. Biomed. Eng. 28, 371-375 (2000).
[PubMed]

Bloch, S. R.

Chance, B.

Chang, J. H.

J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
[CrossRef] [PubMed]

Chen, Y.

T. Moffitt, Y. Chen, and S. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt. 11, 041103 (2006).
[CrossRef] [PubMed]

Culver, J. P.

Delpy, D.

M. Firbank and D. Delpy, "A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

Ebert, B.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Engel, A.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Eppstein, M. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Natl Acad. Sci. USA 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank and D. Delpy, "A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

Godavarty, A.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Natl Acad. Sci. USA 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Graber, H. L.

J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
[CrossRef] [PubMed]

Graves, E.

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Gurfinkel, M.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Disease Markers 19, 107-121 (2003).

Hawrysz, D. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Natl Acad. Sci. USA 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Herschman, H. R.

H. R. Herschman, "Molecular imaging: looking at problems, seeing solutions," Science 302, 605-8 (2003).
[CrossRef] [PubMed]

Hielscher, A. H.

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

A. D. Klose and A. H. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Lett. 28, 1019-1021 (2003).
[CrossRef] [PubMed]

Hoffmann, K.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Jiang, H. B.

H. B. Jiang, S. Ramesh, and M. Bartlett, "Combined optical and fluorescence imaging for breast cancer detection and diagnosis," Crit. Rev. Biomed. Eng. 28, 371-375 (2000).
[PubMed]

Ke, S.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Disease Markers 19, 107-121 (2003).

Klose, A. D.

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

A. D. Klose and A. H. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Lett. 28, 1019-1021 (2003).
[CrossRef] [PubMed]

Li, C.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Disease Markers 19, 107-121 (2003).

Macdonald, R.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Moffitt, T.

T. Moffitt, Y. Chen, and S. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt. 11, 041103 (2006).
[CrossRef] [PubMed]

Neukammer, J.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Niedre, M.

M. Niedre, G. Turner, and V. Ntziachristos, "Time-resolved imaging of optical coefficients through murine chest cavities," J. Biomed. Opt.in press (2006).
[CrossRef]

Nietfeld, W.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Nitschke, R.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Ntziachristos, V.

M. Niedre, G. Turner, and V. Ntziachristos, "Time-resolved imaging of optical coefficients through murine chest cavities," J. Biomed. Opt.in press (2006).
[CrossRef]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio." IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Patterson, M. S.

Patwardhan, S. V.

Prahl, S.

T. Moffitt, Y. Chen, and S. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt. 11, 041103 (2006).
[CrossRef] [PubMed]

Ramesh, S.

H. B. Jiang, S. Ramesh, and M. Bartlett, "Combined optical and fluorescence imaging for breast cancer detection and diagnosis," Crit. Rev. Biomed. Eng. 28, 371-375 (2000).
[PubMed]

Resch-Genger, U.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio." IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Disease Markers 19, 107-121 (2003).

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Natl Acad. Sci. USA 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio." IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Turner, G.

M. Niedre, G. Turner, and V. Ntziachristos, "Time-resolved imaging of optical coefficients through murine chest cavities," J. Biomed. Opt.in press (2006).
[CrossRef]

Wang, L. H. V.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Wen, X. X.

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Disease Markers 19, 107-121 (2003).

Wilson, B. C.

Appl. Opt.

Crit. Rev. Biomed. Eng.

H. B. Jiang, S. Ramesh, and M. Bartlett, "Combined optical and fluorescence imaging for breast cancer detection and diagnosis," Crit. Rev. Biomed. Eng. 28, 371-375 (2000).
[PubMed]

Disease Markers

M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Disease Markers 19, 107-121 (2003).

IEEE Trans. Biomed. Eng.

J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio." IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

T. Moffitt, Y. Chen, and S. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt. 11, 041103 (2006).
[CrossRef] [PubMed]

M. Niedre, G. Turner, and V. Ntziachristos, "Time-resolved imaging of optical coefficients through murine chest cavities," J. Biomed. Opt.in press (2006).
[CrossRef]

J. Comput. Phys.

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

J. Fluoresc.

U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, "How to improve quality assurance in Fluorometry: fluorescence-inherent sources of error and suited fluorescence standards," J. Fluoresc. 15, 337-362 (2005).
[CrossRef] [PubMed]

Med. Phys.

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Nat. Med.

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

M. Firbank and D. Delpy, "A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

Proc. Natl Acad. Sci. USA

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Natl Acad. Sci. USA 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Science

H. R. Herschman, "Molecular imaging: looking at problems, seeing solutions," Science 302, 605-8 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the measurement setup. The time-resolved system is shown here operating at 732nm in trans-illumination mode, which was used to measure the sample optical properties. CFD is the constant fraction discriminator; HRI is the high rate imager and I/I is the image intensifier. For fluorescence measurements a similar arrangement was employed using two constant intensity laser diodes (at 670nm or 750 nm) and appropriate filters (summarized in Table 2); the camera also operating in CW mode.

Fig. 2.
Fig. 2.

Optical property measurements for the silicone material at 732nm measured using the time-resolved system of Fig. 1. The absorption and reduced scattering coefficients are shown as a function of the amount of the black (c, d) and white pigment (c, d) added. The white pigment content in (a) and (b) was constant at 0.65mg for 1ml of base material (i.e. 0.5ml Part A and B). The black pigment in (c) and (d) was 0.13mg for 1ml of base material (i.e. 0.5ml Part A and B).

Fig. 3.
Fig. 3.

Optical coefficient measurements for the resin material at 732nm measured using the time-resolved system of Fig. 1. The reduced scattering and absorption coefficients of the resin base material are shown as a function of the amount of India Ink (a, b) and TiO2 particles (c, d) added. Data in (a) and (b) are obtained assuming 1.5mg TiO2 per 1ml of resin. Data in (c) and (d) are obtained with 150μg of India Ink per 1ml resin.

Fig. 4.
Fig. 4.

Summary of the auto-fluorescence data obtained from the base material and absorber/scatterer concentrations described in §3.1, and their corresponding containers, before and after curing at the two wavelengths of interest. No significant differences were observed before and after curing, however 750nm yielded higher values compared to 670nm. Overall, it was determined that the auto-fluorescence was negligible compared to the values obtained when the fluorescent dyes were placed in the sample, even at the lowest concentration used in the study (i.e. 100nM).

Fig. 5.
Fig. 5.

Normalized fluorescent intensity as a function of (a) Cy5.5 (b), AF 750 (c), IR 676 Iodide, and (d) IR 780 Iodide titrated in 1% Intralipid/50ppm India Ink solution at three concentrations (100nM, 400nM, and 1000nM).

Fig. 6.
Fig. 6.

Normalized fluorescent intensity as a function of (a) Cy5.5 (b), AF 750 (c), IR 676 Iodide, and (d) IR 780 Iodide titrated in resin (a, b) and silicone (c, d) at 100-1000nM concentrations. The strength observed with the hydrophilic dyes Cy5.5 and AF750 are shown for the material before curing, because a very strong signal reduction was observed after curing. The results for the hydrophobic dyes (IR 676, IR 780) are shown for the cured silicone and they demonstrated an interaction of the dye with the base material which caused an offset in the corresponding regression, which does not intercept zero.

Fig. 7.
Fig. 7.

The fluorescence strength measured from the different materials as a function of time at dye concentrations of 500nM and 1000nM. The samples were imaged at short intervals (~2h) during the curing process, and then periodically thereafter over a period of two months.

Fig. 8.
Fig. 8.

An example of fluorescence normalization (i.e. emitted fluorescence divided by the incident excitation light). (a) raw data and (b) normalized fluorescence measurements for the titration experiment of Fig. 6(c). Data normalization compensated for inhomogeneities within the samples, laser power fluctuations between measurements, coupling variations, etc. This example shows that a linear trend exists between fluorescence intensity and concentration, however experimental factors can lead to outliers (a) oval region, which are appropriately corrected for by normalizing the data (b).

Tables (3)

Tables Icon

Table 1: Summary of the fluorochromes considered in this study and corresponding base materials.

Tables Icon

Table 2: Summary of filters used for the excitation and the fluorescence measurements.

Tables Icon

Table 3. Summary of the optical coefficients for the silicone and resin base materials employed in the study, from a larger number of base materials constructed as per Fig.’s 2 and 3.

Metrics