Abstract

This paper describes a procedure to replicate a polymeric wavelength filter. In this work, the grating structure on a polymer is fabricated first using holographic interferometry and micro-molding processes. The polymeric wavelength filters are produced by a two-step molding process where the master mold is first formed on a negative tone photoresist and subsequently transferred to a PDMS mold; following this step, the PDMS silicon rubber mold was used as a stamp to transfer the pattern of the polymeric wavelength filters onto a UV cure epoxy. Initial results show good pattern transfer in physical shape. At the Bragg wavelength, a transmission dip of -15.5 dB relative to the -3dB background insertion loss and a 3-dB-transmission bandwidth of ∼ 6nm were obtained from the device.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3, 895–900 (1985).
    [Crossref]
  2. H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
    [Crossref]
  3. C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
    [Crossref]
  4. Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
    [Crossref]
  5. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
    [Crossref]
  6. S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
    [Crossref]
  7. A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
    [Crossref]
  8. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
    [Crossref]
  9. J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
    [Crossref]
  10. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 189–1195 (1993).
    [Crossref]
  11. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).
  12. L. Eldada, C. Xu, K.M.T. Stengel, L.W. Shacklette, and J.T. Yardley,”Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
    [Crossref]
  13. L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
    [Crossref]
  14. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
    [Crossref]
  15. B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, “Photoinscription of surface relief grating on azo-hybrid gels,” Advanced Materials 10, 1133–1136 (1998).
    [Crossref]
  16. D. J. Kang, J. K. Kim, and B. S. Bae, “Simple fabrication of diffraction gratings by two beam interference method in highly photosensitivity hybrid sol-gel films,” Opt. Express 12, 3947–3953 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3947.
    [Crossref] [PubMed]
  17. L. Zhu, Y. Huang, W. M. J. Green, and A. Yariv, “Polymetric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12, 6372–6376 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6372.
    [Crossref] [PubMed]
  18. D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique,” Appl. Phys. Lett. 88, 071120, (2006).
    [Crossref]
  19. A. Kocabas and A. Aydinli, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14, 10228–10232 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-22-10232.
    [Crossref] [PubMed]
  20. W.C. Chuang, C.T. Ho, and W.C. Wang, “Fabrication of a high resolution periodical structure using a replication process” Opt. Express 13, 6685–6692 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-6685.
    [Crossref] [PubMed]
  21. Jae Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide”, IEEE Photonics Technol. Lett. 14, 1297–1299 (2002).
    [Crossref]
  22. T.E. Van Eck, A.J. Ticknor, R.S. Lytel, and G.F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide”, Appl. Phys. Lett. 58, 1588–1590, (1991).
    [Crossref]
  23. O. Watanabe and M. Tsuchimori, “Improvement in linear and nonlinear optical-properties by blending poly(N-vinyl-2-pyrrolidone) with an electro-optic polymer”, Polymer 42, 6447–6451 (2001).
    [Crossref]
  24. M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
    [Crossref]
  25. W. Wang, D. Chen, and H.R. Fetterman, “Travelling wave electro-optic phase modulator using cross-linked nonlinear optical polymer”, Appl. Phys. Lett. 65, 929–931 (1994).
    [Crossref]
  26. B.L. Booth, “Low loss channel waveguides in polymers”, J. Lightware Technol. 7, 1445–1453 (1989).
    [Crossref]
  27. L. Eldada and L.W. Shacklette, “Advances in polymer integrated optics”, IEEE J. Select. Topics Quantum Electron 6, 54–68 (2000).
    [Crossref]
  28. Y.Y. Maruo, S. Sasaki, and T. Tamamura, “Embedded channel polyimide waveguide fabricatio9 by direct electron beam writing method”, J. Lightwave Technol 13, 1718–1723 (1995).
    [Crossref]
  29. Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
    [Crossref]
  30. P. M. Ferm and L. W. Shacklette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear,Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
    [Crossref]
  31. K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
    [Crossref]
  32. X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,“ Appl. Phys. Lett. 71, 1017–1019 (1997).
    [Crossref]
  33. W.C. Chuang, C.T. Ho, and W. C. Chang, “Fabrication of polymer waveguides by a replication method,” Applied Optics 45, 8304–8307 (2006).
    [Crossref] [PubMed]
  34. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
    [Crossref]
  35. P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
    [Crossref]
  36. M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
    [Crossref]
  37. A. Yarin, Introduction to Optical Electronics, 3rd edition, (H. Rinehart & Winston, New York, 1984).
  38. T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Optics Communication,  157, 249–264 (1998).
    [Crossref]

2006 (3)

D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique,” Appl. Phys. Lett. 88, 071120, (2006).
[Crossref]

A. Kocabas and A. Aydinli, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14, 10228–10232 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-22-10232.
[Crossref] [PubMed]

W.C. Chuang, C.T. Ho, and W. C. Chang, “Fabrication of polymer waveguides by a replication method,” Applied Optics 45, 8304–8307 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

2003 (2)

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[Crossref]

2002 (1)

Jae Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide”, IEEE Photonics Technol. Lett. 14, 1297–1299 (2002).
[Crossref]

2001 (1)

O. Watanabe and M. Tsuchimori, “Improvement in linear and nonlinear optical-properties by blending poly(N-vinyl-2-pyrrolidone) with an electro-optic polymer”, Polymer 42, 6447–6451 (2001).
[Crossref]

2000 (3)

L. Eldada and L.W. Shacklette, “Advances in polymer integrated optics”, IEEE J. Select. Topics Quantum Electron 6, 54–68 (2000).
[Crossref]

P. M. Ferm and L. W. Shacklette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear,Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
[Crossref]

A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
[Crossref]

1999 (1)

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

1998 (6)

B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, “Photoinscription of surface relief grating on azo-hybrid gels,” Advanced Materials 10, 1133–1136 (1998).
[Crossref]

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[Crossref]

Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
[Crossref]

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Optics Communication,  157, 249–264 (1998).
[Crossref]

1997 (2)

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[Crossref]

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,“ Appl. Phys. Lett. 71, 1017–1019 (1997).
[Crossref]

1996 (4)

L. Eldada, C. Xu, K.M.T. Stengel, L.W. Shacklette, and J.T. Yardley,”Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[Crossref]

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[Crossref]

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[Crossref]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[Crossref]

1995 (3)

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[Crossref]

Y.Y. Maruo, S. Sasaki, and T. Tamamura, “Embedded channel polyimide waveguide fabricatio9 by direct electron beam writing method”, J. Lightwave Technol 13, 1718–1723 (1995).
[Crossref]

1994 (1)

W. Wang, D. Chen, and H.R. Fetterman, “Travelling wave electro-optic phase modulator using cross-linked nonlinear optical polymer”, Appl. Phys. Lett. 65, 929–931 (1994).
[Crossref]

1993 (2)

M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
[Crossref]

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 189–1195 (1993).
[Crossref]

1992 (1)

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[Crossref]

1991 (1)

T.E. Van Eck, A.J. Ticknor, R.S. Lytel, and G.F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide”, Appl. Phys. Lett. 58, 1588–1590, (1991).
[Crossref]

1989 (1)

B.L. Booth, “Low loss channel waveguides in polymers”, J. Lightware Technol. 7, 1445–1453 (1989).
[Crossref]

1985 (1)

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3, 895–900 (1985).
[Crossref]

1980 (1)

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Ahn, S.-W.

D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique,” Appl. Phys. Lett. 88, 071120, (2006).
[Crossref]

Aizenberg, J.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[Crossref]

Amano, M.

M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
[Crossref]

Ang, A.W.

A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
[Crossref]

Aramaki, S.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 189–1195 (1993).
[Crossref]

Assanto, G.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 189–1195 (1993).
[Crossref]

Aydinli, A.

Bae, B. S.

Becker, Holger

Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
[Crossref]

Bergveld, P.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[Crossref]

Blomquist, R.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Boilot, J.-P.

B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, “Photoinscription of surface relief grating on azo-hybrid gels,” Advanced Materials 10, 1133–1136 (1998).
[Crossref]

Booth, B.L.

B.L. Booth, “Low loss channel waveguides in polymers”, J. Lightware Technol. 7, 1445–1453 (1989).
[Crossref]

Boudoughian, G.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

Breen, T. L.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[Crossref]

Burkhard, H.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[Crossref]

Chang, W. C.

W.C. Chuang, C.T. Ho, and W. C. Chang, “Fabrication of polymer waveguides by a replication method,” Applied Optics 45, 8304–8307 (2006).
[Crossref] [PubMed]

Chaput, F.

B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, “Photoinscription of surface relief grating on azo-hybrid gels,” Advanced Materials 10, 1133–1136 (1998).
[Crossref]

Chen, D.

W. Wang, D. Chen, and H.R. Fetterman, “Travelling wave electro-optic phase modulator using cross-linked nonlinear optical polymer”, Appl. Phys. Lett. 65, 929–931 (1994).
[Crossref]

Chin, W.-J.

D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique,” Appl. Phys. Lett. 88, 071120, (2006).
[Crossref]

Chuang, W.C.

Darracq, B.

B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, “Photoinscription of surface relief grating on azo-hybrid gels,” Advanced Materials 10, 1133–1136 (1998).
[Crossref]

Dietz, Wolfram

Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
[Crossref]

Eldada, L.

L. Eldada and L.W. Shacklette, “Advances in polymer integrated optics”, IEEE J. Select. Topics Quantum Electron 6, 54–68 (2000).
[Crossref]

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

L. Eldada, C. Xu, K.M.T. Stengel, L.W. Shacklette, and J.T. Yardley,”Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[Crossref]

Erdogan, T.

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Optics Communication,  157, 249–264 (1998).
[Crossref]

Evans, A.G.R.

A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
[Crossref]

Ferm, P. M.

P. M. Ferm and L. W. Shacklette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear,Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
[Crossref]

Fetterman, H.R.

W. Wang, D. Chen, and H.R. Fetterman, “Travelling wave electro-optic phase modulator using cross-linked nonlinear optical polymer”, Appl. Phys. Lett. 65, 929–931 (1994).
[Crossref]

Friesem, A. A.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[Crossref]

Glass, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Grabmaier, A.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[Crossref]

Green, W. M. J.

Handa, Y.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Hansmann, S.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[Crossref]

Herzig, H. P.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Hikita, M.

M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
[Crossref]

Hillmer, H.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[Crossref]

Ho, C.T.

Huang, Y.

Huser, A.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Imoto, N.

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3, 895–900 (1985).
[Crossref]

Josey, M.R.

A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
[Crossref]

Kang, D. J.

Kang, J. W.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

Kim, D. Y.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]

Kim, D.-H.

D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique,” Appl. Phys. Lett. 88, 071120, (2006).
[Crossref]

Kim, J. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

Kim, J. K.

Kim, J. P.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

Kim, Jang-Joo

Jae Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide”, IEEE Photonics Technol. Lett. 14, 1297–1299 (2002).
[Crossref]

Kim, Jinkyu

Jae Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide”, IEEE Photonics Technol. Lett. 14, 1297–1299 (2002).
[Crossref]

Kim, M. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

Kocabas, A.

Kondo, Y.

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[Crossref]

Koyama, J.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Kozawaguchi, H.

M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
[Crossref]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]

Lahlit, K.

B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, “Photoinscription of surface relief grating on azo-hybrid gels,” Advanced Materials 10, 1133–1136 (1998).
[Crossref]

Lee, J. S.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

Lee, K.-D.

D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique,” Appl. Phys. Lett. 88, 071120, (2006).
[Crossref]

Lee, Myong-Hoon

Jae Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide”, IEEE Photonics Technol. Lett. 14, 1297–1299 (2002).
[Crossref]

Lee, S.-S.

D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique,” Appl. Phys. Lett. 88, 071120, (2006).
[Crossref]

Levy, Y.

B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, “Photoinscription of surface relief grating on azo-hybrid gels,” Advanced Materials 10, 1133–1136 (1998).
[Crossref]

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]

Li, Xiangdan

Jae Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide”, IEEE Photonics Technol. Lett. 14, 1297–1299 (2002).
[Crossref]

Lin, C. H.

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[Crossref]

Lipscomb, G.F.

T.E. Van Eck, A.J. Ticknor, R.S. Lytel, and G.F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide”, Appl. Phys. Lett. 58, 1588–1590, (1991).
[Crossref]

Lo, Y. H.

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[Crossref]

Lotters, J. C.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[Crossref]

Lytel, R.S.

T.E. Van Eck, A.J. Ticknor, R.S. Lytel, and G.F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide”, Appl. Phys. Lett. 58, 1588–1590, (1991).
[Crossref]

Maciossek, A.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[Crossref]

Marciniak, M.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 189–1195 (1993).
[Crossref]

Marty, B.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[Crossref]

Maruo, Y.Y.

Y.Y. Maruo, S. Sasaki, and T. Tamamura, “Embedded channel polyimide waveguide fabricatio9 by direct electron beam writing method”, J. Lightwave Technol 13, 1718–1723 (1995).
[Crossref]

Maxfield, M.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

Nishihara, H.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Norwood, R.A

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

Norwood, R.A.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Nussbaum, P.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Oku, S.

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[Crossref]

Olthuis, W.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[Crossref]

Pant, D.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

Paul, K. E.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[Crossref]

Philipoussis, I.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Poga, C.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

Prentiss, M.

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,“ Appl. Phys. Lett. 71, 1017–1019 (1997).
[Crossref]

P-Smith, S.

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,“ Appl. Phys. Lett. 71, 1017–1019 (1997).
[Crossref]

Qian, Y.

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[Crossref]

Reed, G.T.

A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
[Crossref]

Rosenblatt, D.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[Crossref]

Rossi, M.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[Crossref]

Routley, P.R.

A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
[Crossref]

Rudmanr, H.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[Crossref]

Sasaki, S.

Y.Y. Maruo, S. Sasaki, and T. Tamamura, “Embedded channel polyimide waveguide fabricatio9 by direct electron beam writing method”, J. Lightwave Technol 13, 1718–1723 (1995).
[Crossref]

Shacklette, L. W.

P. M. Ferm and L. W. Shacklette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear,Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
[Crossref]

Shacklette, L.W.

L. Eldada and L.W. Shacklette, “Advances in polymer integrated optics”, IEEE J. Select. Topics Quantum Electron 6, 54–68 (2000).
[Crossref]

L. Eldada, C. Xu, K.M.T. Stengel, L.W. Shacklette, and J.T. Yardley,”Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[Crossref]

Sharon, A.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[Crossref]

Shibata, Y.

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[Crossref]

Shuto, Y.

M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
[Crossref]

Stegeman, G. I.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 189–1195 (1993).
[Crossref]

Stengel, K.M.T.

L. Eldada, C. Xu, K.M.T. Stengel, L.W. Shacklette, and J.T. Yardley,”Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[Crossref]

Suhara, T.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Tamamura, T.

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[Crossref]

Y.Y. Maruo, S. Sasaki, and T. Tamamura, “Embedded channel polyimide waveguide fabricatio9 by direct electron beam writing method”, J. Lightwave Technol 13, 1718–1723 (1995).
[Crossref]

Ticknor, A.J.

T.E. Van Eck, A.J. Ticknor, R.S. Lytel, and G.F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide”, Appl. Phys. Lett. 58, 1588–1590, (1991).
[Crossref]

Tomaru, S.

M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
[Crossref]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]

Tsuchimori, M.

O. Watanabe and M. Tsuchimori, “Improvement in linear and nonlinear optical-properties by blending poly(N-vinyl-2-pyrrolidone) with an electro-optic polymer”, Polymer 42, 6447–6451 (2001).
[Crossref]

Van Eck, T.E.

T.E. Van Eck, A.J. Ticknor, R.S. Lytel, and G.F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide”, Appl. Phys. Lett. 58, 1588–1590, (1991).
[Crossref]

Veltink, P. H.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[Crossref]

Vonsovici, A.

A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
[Crossref]

Waldman, S. J.

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,“ Appl. Phys. Lett. 71, 1017–1019 (1997).
[Crossref]

Wang, W.

W. Wang, D. Chen, and H.R. Fetterman, “Travelling wave electro-optic phase modulator using cross-linked nonlinear optical polymer”, Appl. Phys. Lett. 65, 929–931 (1994).
[Crossref]

Wang, W.C.

Watanabe, O.

O. Watanabe and M. Tsuchimori, “Improvement in linear and nonlinear optical-properties by blending poly(N-vinyl-2-pyrrolidone) with an electro-optic polymer”, Polymer 42, 6447–6451 (2001).
[Crossref]

Whitesides, G. M.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[Crossref]

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,“ Appl. Phys. Lett. 71, 1017–1019 (1997).
[Crossref]

Wook Kang, Jae

Jae Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide”, IEEE Photonics Technol. Lett. 14, 1297–1299 (2002).
[Crossref]

Wu, S.

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[Crossref]

Xu, C.

L. Eldada, C. Xu, K.M.T. Stengel, L.W. Shacklette, and J.T. Yardley,”Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[Crossref]

Yardley, J.T.

L. Eldada, C. Xu, K.M.T. Stengel, L.W. Shacklette, and J.T. Yardley,”Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[Crossref]

Yarin, A.

A. Yarin, Introduction to Optical Electronics, 3rd edition, (H. Rinehart & Winston, New York, 1984).

Yariv, A.

Yin, S.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[Crossref]

Yoo, S. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

Yoshimura, R.

M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
[Crossref]

Yu, F. T. S.

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[Crossref]

Zhao, X.-M.

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,“ Appl. Phys. Lett. 71, 1017–1019 (1997).
[Crossref]

Zhu, H. L.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[Crossref]

Zhu, L.

Zhu, Z. H.

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[Crossref]

Advanced Materials (1)

B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, “Photoinscription of surface relief grating on azo-hybrid gels,” Advanced Materials 10, 1133–1136 (1998).
[Crossref]

Appl. Phys. Lett. (9)

D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, “Tunable polymeric Bragg grating filter using nanoimprint technique,” Appl. Phys. Lett. 88, 071120, (2006).
[Crossref]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[Crossref]

T.E. Van Eck, A.J. Ticknor, R.S. Lytel, and G.F. Lipscomb, “Complementary optical tap fabricated in an electro-optic polymer waveguide”, Appl. Phys. Lett. 58, 1588–1590, (1991).
[Crossref]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[Crossref]

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,“ Appl. Phys. Lett. 71, 1017–1019 (1997).
[Crossref]

M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, “Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer”, Appl. Phys. Lett. 63, 1161–1163 (1993).
[Crossref]

W. Wang, D. Chen, and H.R. Fetterman, “Travelling wave electro-optic phase modulator using cross-linked nonlinear optical polymer”, Appl. Phys. Lett. 65, 929–931 (1994).
[Crossref]

Applied Optics (1)

W.C. Chuang, C.T. Ho, and W. C. Chang, “Fabrication of polymer waveguides by a replication method,” Applied Optics 45, 8304–8307 (2006).
[Crossref] [PubMed]

IEEE J. Quantum Electron (1)

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[Crossref]

IEEE J. Select. Topics Quantum Electron (1)

L. Eldada and L.W. Shacklette, “Advances in polymer integrated optics”, IEEE J. Select. Topics Quantum Electron 6, 54–68 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (5)

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R.A Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photonics Technol. Lett. 11, 448–450 (1999).
[Crossref]

Jae Wook Kang, Jang-Joo Kim, Jinkyu Kim, Xiangdan Li, and Myong-Hoon Lee, “Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide”, IEEE Photonics Technol. Lett. 14, 1297–1299 (2002).
[Crossref]

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[Crossref]

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[Crossref]

A.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, and M.R. Josey, “Effect of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technol. Lett. 12, 59–61(2000)
[Crossref]

IEEE, Photonics Technol. Lett. (1)

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[Crossref]

J. Lightware Technol. (1)

B.L. Booth, “Low loss channel waveguides in polymers”, J. Lightware Technol. 7, 1445–1453 (1989).
[Crossref]

J. Lightwave Technol (1)

Y.Y. Maruo, S. Sasaki, and T. Tamamura, “Embedded channel polyimide waveguide fabricatio9 by direct electron beam writing method”, J. Lightwave Technol 13, 1718–1723 (1995).
[Crossref]

J. Lightwave Technol. (4)

L. Eldada, C. Xu, K.M.T. Stengel, L.W. Shacklette, and J.T. Yardley,”Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[Crossref]

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3, 895–900 (1985).
[Crossref]

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[Crossref]

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 189–1195 (1993).
[Crossref]

J. Micromech. Microeng. (1)

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[Crossref]

Opt. Eng. (1)

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[Crossref]

Opt. Express (4)

Optics Communication (1)

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Optics Communication,  157, 249–264 (1998).
[Crossref]

Polymer (1)

O. Watanabe and M. Tsuchimori, “Improvement in linear and nonlinear optical-properties by blending poly(N-vinyl-2-pyrrolidone) with an electro-optic polymer”, Polymer 42, 6447–6451 (2001).
[Crossref]

Proc. SPIE (1)

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

SPIE (3)

Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
[Crossref]

P. M. Ferm and L. W. Shacklette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear,Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
[Crossref]

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[Crossref]

Other (1)

A. Yarin, Introduction to Optical Electronics, 3rd edition, (H. Rinehart & Winston, New York, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

AFM and SEM micrographs of gratings on UV polymer (a) AFM (b) SEM (503 nm grating period and 397 nm grating depth)

Fig. 2.
Fig. 2.

Fabrication process of buried gratings in polymeric waveguide filter structures, a) UV polymer with gratings was deposited on the glass, b) UV light exposure of photoresist, c) photoresist mold, d) PDMS is poured into the photoresist mold, e) PDMS mold, f) A spacer with a thickness of 400μm is positioned, g) OG146 precure epoxy is injected into the space, h) hardened epoxy forms the cladding layer of polymeric waveguide filter, i) forming a rectangular channel, j) Mixed OG epoxy is injected into the channel, k) The epoxy in the channel was then cured by exposing with UV light, and the cover glass and the PDMS layer are removed from the sample, l) A spacer with a thickness of 9400μm was positioned, m) OG146 epoxy is injected into the channel, n) final polymeric waveguide filter.

Fig. 3.
Fig. 3.

SEM micrograph of the waveguide pattern on photoresist, which showed the intact grating pattern inside the groove , and SEM was tilted 55° degree (the dimension is 8.7μm × 6μm, the length is 5cm, and the grating period is 503nm).

Fig. 4.
Fig. 4.

SEM micrograph of the PDMS waveguide with gratings, and SEM was tilted 35° Degree (the dimension is 8.7μm × 6μm, the length is 5 cm, and the grating period is 502nm).

Fig. 5.
Fig. 5.

SEM micrograph of the OG146 rectangular groove, which showed the intact grating pattern inside the groove, and SEM was tilted 5° degree (the dimension is 8.7μm × 6μm, the length is 5cm, and the grating period is 503nm).

Fig. 6.
Fig. 6.

Schematic diagram of the mode field measurement system

Fig. 7.
Fig. 7.

The mode field of the waveguide

Fig. 8.
Fig. 8.

Transmission spectrum of the polymeric wavelength filter with 0.5cm-long grating length.

Fig. 9.
Fig. 9.

SEM micrograph of the PDMS mold of ABC waveguide filter (the dimensions of the two asymmetric coupled waveguide are 7.8μm × 6μm ,11μm × 6μm , the length is 4cm, and the gap is about 4μm).

Metrics