Abstract

A diode-pumped, cryogenically-cooled Yb:KYW regenerative amplifier utilizing chirped-pulse amplification and regenerative pulse shaping has been developed. An amplified pulse with an energy of 5.5 mJ and a broad bandwidth of 3.4 nm is achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
High-efficiency, room-temperature nanosecond Yb:YAG laser

M. Siebold, M. Loeser, U. Schramm, J. Koerner, M. Wolf, M. Hellwing, J. Hein, and K. Ertel
Opt. Express 17(22) 19887-19893 (2009)

Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited]

Darren Rand, Daniel Miller, Daniel J. Ripin, and Tso Yee Fan
Opt. Mater. Express 1(3) 434-450 (2011)

On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited]

Frédéric Druon, Sandrine Ricaud, Dimitris N. Papadopoulos, Alain Pellegrina, Patrice Camy, Jean Louis Doualan, Richard Moncorgé, Antoine Courjaud, Eric Mottay, and Patrick Georges
Opt. Mater. Express 1(3) 489-502 (2011)

References

  • View by:
  • |
  • |
  • |

  1. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
    [Crossref] [PubMed]
  2. H. Bruesselbach and D. S. Sumida, “69-W-average-power Yb:YAG laser,” Opt. Lett. 21, 480–482 (1996).
    [Crossref] [PubMed]
  3. N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
    [Crossref]
  4. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
    [Crossref]
  5. H. Liu, J. Nees, and G. Mourou, “Directly diode-pumped Yb:KY(WO4)2 regenerative amplifiers,” Opt. Lett. 27, 722–724 (2002).
    [Crossref]
  6. D. Nickel, C. Stolzenburg, A. Giesen, and F. Butze, “Ultrafast thin-disk Yb:KY(WO4)2 regenerative amplifier with a 200-kHz repetition rate,” Opt. Lett. 29, 2764–2766 (2004).
    [Crossref] [PubMed]
  7. A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier” Appl. Phys. B 80, 655–660 (2005).
    [Crossref]
  8. H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
    [Crossref]
  9. J. Kawanaka, H. Nishioka, N. Inoue, and K.-I. Ueda, “Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system,” Appl. Opt. 40, 3542–3546 (2001).
    [Crossref]
  10. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb̂3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
    [Crossref]
  11. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [Crossref]
  12. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb̂3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
    [Crossref]
  13. J. Kawanaka, H. Nishioka, N. Inoue, and K.-I. Ueda, “Tunable Continuous-Wave Yb:YLF Laser Operation with a Diode-Pumped Chirped-Pulse Amplification System,” Appl. Opt. 40, 3542–3546 (2001).
    [Crossref]
  14. J. Kawanaka, K. Yamakawa, H. Nishioka, and K.-I. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28, 2121–2123 (2003).
    [Crossref] [PubMed]
  15. S. Tokita, et al., “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
    [Crossref]
  16. K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications” IEEE Journal of Sel. Top. Quantum Electron. 6, 658–675, (2000).
    [Crossref]

2005 (3)

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier” Appl. Phys. B 80, 655–660 (2005).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

S. Tokita, et al., “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
[Crossref]

2004 (1)

2003 (3)

2002 (2)

H. Liu, J. Nees, and G. Mourou, “Directly diode-pumped Yb:KY(WO4)2 regenerative amplifiers,” Opt. Lett. 27, 722–724 (2002).
[Crossref]

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

2001 (2)

2000 (1)

K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications” IEEE Journal of Sel. Top. Quantum Electron. 6, 658–675, (2000).
[Crossref]

1997 (2)

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
[Crossref]

1996 (1)

1995 (1)

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Barty, C. P. J.

K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications” IEEE Journal of Sel. Top. Quantum Electron. 6, 658–675, (2000).
[Crossref]

Bass, M.

Beyertt, A.

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier” Appl. Phys. B 80, 655–660 (2005).
[Crossref]

Biswal, S.

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

Brauch, U.

Bruesselbach, H.

Butze, F.

Deng, P.

Diening, A.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

Dong, J.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Gan, F.

Giesen, A.

Heumann, E.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

Huber, G.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
[Crossref]

Inoue, N.

Jensen, T.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

Karszewski, M.

Kawanaka, J.

Keller, U.

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

Kules, N. V.

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

Kuleshov, N. V.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
[Crossref]

Lagatsky, A. A.

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

Liu, H.

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

H. Liu, J. Nees, and G. Mourou, “Directly diode-pumped Yb:KY(WO4)2 regenerative amplifiers,” Opt. Lett. 27, 722–724 (2002).
[Crossref]

Mao, Y.

Mikhailov, V. P.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
[Crossref]

Mourou, G.

H. Liu, J. Nees, and G. Mourou, “Directly diode-pumped Yb:KY(WO4)2 regenerative amplifiers,” Opt. Lett. 27, 722–724 (2002).
[Crossref]

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

Nees, J.

H. Liu, J. Nees, and G. Mourou, “Directly diode-pumped Yb:KY(WO4)2 regenerative amplifiers,” Opt. Lett. 27, 722–724 (2002).
[Crossref]

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

Nickel, D.

Nishioka, H.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Podlipensky, A. V.

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Shcherbitsky, V. G.

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

Spühler, G. J.

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

Stewen, C.

Stolzenburg, C.

Sumida, D. S.

Tokita, S.

S. Tokita, et al., “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
[Crossref]

Ueda, K.-I.

Voss, A.

Yamakawa, K.

J. Kawanaka, K. Yamakawa, H. Nishioka, and K.-I. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28, 2121–2123 (2003).
[Crossref] [PubMed]

K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications” IEEE Journal of Sel. Top. Quantum Electron. 6, 658–675, (2000).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (3)

S. Tokita, et al., “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, “CW laser performance of Yb and Er, Yb doped tungstates,” Appl. Phys. B 64, 409–411 (1997).
[Crossref]

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier” Appl. Phys. B 80, 655–660 (2005).
[Crossref]

IEEE Journal of Sel. Top. Quantum Electron. (1)

K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and high-average power Ti:sapphire laser system and its applications” IEEE Journal of Sel. Top. Quantum Electron. 6, 658–675, (2000).
[Crossref]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kules, “Yb:KG(WO4)2 chirped-pulse regenerative amplifiers,” Opt. Commun. 203, 315–321 (2002).
[Crossref]

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Layout of the Yb:KYW regenerative amplifier.

Fig. 2.
Fig. 2.

Output pulse energy and conversion efficiency of the regenerative amplifier as a function of absorbed pump energy.

Fig. 3.
Fig. 3.

Amplified spectra without (dashed line) and with etalons (solid line). Inset, a compressed pulse calculated from the measure amplified spectrum with the etalon.

Metrics