Abstract

We present a novel scattering microscopy method to detect the orientation of individual silver nanorods and to measure their relative distances. Using confocal microscopy in combination with either the fundamental or higher order laser modes, scattering images of silver nanorods were recorded. The distance between two individual nanorods was measured with an accuracy in the order of 1 nm. We detected the orientation of isolated silver nanorods with a precision of 0.5 degree that corresponds to a rotational arch of about 1 nm. The results demonstrate the potential of the technique for the visualization of non-bleaching labels in biosciences.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Klar, E. Engel, and S.W. Hell. Breaking abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64066613, 2001.
    [CrossRef]
  2. K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006.
    [CrossRef]
  3. S. W. Hell and M. Nagorni. 4pi confocal microscopy with alternate interference, Opt. Lett. 231567-1569, 1998.
    [CrossRef]
  4. M. Schmidt, M. Nagorni, and S.W. Hell. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 712742-2745, 2000.
    [CrossRef]
  5. B. Albrecht, A.V. Failla, A. Schweitzer, and C. Cremer. Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range, Appl. Opt. 4180-87, 2002.
    [CrossRef] [PubMed]
  6. A. V. Failla, U. Spoeri, B. Albrecht, A. Kroll, and C. Cremer. Nanosizing of fluorescent objects by spatially modulated illumination microscopy, Appl. Opt. 417275-7283, 2002.
    [CrossRef] [PubMed]
  7. A. Y. Yildiz, M. Tomishige, R. D. Vale and P. L. Selvin. Kinesis Walks Hand-Over-Hand, Science 303676-678, 2004.
    [CrossRef]
  8. A. P. Bartko and R. M. Dickson. Imaging Three-Dimensional Single Molecule Orientation, J.Phys.Chem.B. 10311237-11241, 1999.
    [CrossRef]
  9. S. Martin, A. V. Failla, U. Spoeri, C. Cremer, and A. Pombo. Measuring the size of biological nanostructures with spatially modulated illumination microscopy, Molecular Biology of the Cell 417275-7283, 2004.
  10. G. Donnert, C. Eggeling, and S. W. Hell. Major signal increase in fluorescence microscopy through dark-state relaxation, Nature (London) Methods 481-86, 2007.
    [CrossRef]
  11. J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004.
    [CrossRef]
  12. B. D. Busbee, S. O. Obare, and C. J. Murphy. An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15414-417, 2003.
    [CrossRef]
  13. B. Nikoobakht and M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (nrs) using seedmediated growth method, Chem. Mater. 151957-1962, 2003.
    [CrossRef]
  14. F. V. Ignatovich, A. Hartschuh, and L. Novotny. Detection of nanoparticles using optical gradient forces, J. Mod. Opt. 501509-1520, 2003.
  15. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface, Opt. Express 14405-414, 2006.
    [CrossRef] [PubMed]
  16. O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
    [CrossRef]
  17. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.
  18. C. Snnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann. Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88077402, 2002.
    [CrossRef]
  19. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
    [CrossRef]
  20. M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner. for the institute of Physical Chemistry University of Tuebingen are preparing a manuscript to be called: Plasmon enhanced luminescence in gold nanospheres aggregates.
  21. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg. Multiphoton plasmon-resonance microscopy, Opt. Express 111385-1391, 2003.
    [CrossRef] [PubMed]
  22. C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature (London) 23741-745, 2005.
    [CrossRef]
  23. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J.Am.Chem.Soc,  1282115-2120, 2006.
    [CrossRef] [PubMed]
  24. H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1
  25. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006.
    [CrossRef] [PubMed]
  26. T. Zchner, A. V. Failla, A. Hartschuh, and A. J. Meixner. A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy. Journal ofMicroscopy Accepted 2007.
  27. C. J. R. Sheppard and D. M. Shotton. Confocal Laser Scanning Microscopy. (Bios Scientific Publishers, 1997).
  28. C. J. R. Sheppard and Y. Gong. Improvement in axial resolution by interference confocal microscopy, Optik 87129-132, 1991.Q2
  29. N. R. Jana, L. Gearheart, and C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun.617-618, 2001.
    [CrossRef]
  30. R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91233901-233904, 2003.
    [CrossRef] [PubMed]
  31. C. F. Bohren and D. R. Huffman. Absorbtion and Scattering of Light by Small Particles. (WILEY-VCH Verlag Gmbh 1998).

2007

G. Donnert, C. Eggeling, and S. W. Hell. Major signal increase in fluorescence microscopy through dark-state relaxation, Nature (London) Methods 481-86, 2007.
[CrossRef]

2006

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface, Opt. Express 14405-414, 2006.
[CrossRef] [PubMed]

O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
[CrossRef]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.

K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006.
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J.Am.Chem.Soc,  1282115-2120, 2006.
[CrossRef] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006.
[CrossRef] [PubMed]

2005

H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
[CrossRef]

C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature (London) 23741-745, 2005.
[CrossRef]

2004

S. Martin, A. V. Failla, U. Spoeri, C. Cremer, and A. Pombo. Measuring the size of biological nanostructures with spatially modulated illumination microscopy, Molecular Biology of the Cell 417275-7283, 2004.

A. Y. Yildiz, M. Tomishige, R. D. Vale and P. L. Selvin. Kinesis Walks Hand-Over-Hand, Science 303676-678, 2004.
[CrossRef]

J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004.
[CrossRef]

2003

B. D. Busbee, S. O. Obare, and C. J. Murphy. An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15414-417, 2003.
[CrossRef]

B. Nikoobakht and M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (nrs) using seedmediated growth method, Chem. Mater. 151957-1962, 2003.
[CrossRef]

F. V. Ignatovich, A. Hartschuh, and L. Novotny. Detection of nanoparticles using optical gradient forces, J. Mod. Opt. 501509-1520, 2003.

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg. Multiphoton plasmon-resonance microscopy, Opt. Express 111385-1391, 2003.
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91233901-233904, 2003.
[CrossRef] [PubMed]

2002

2001

T. A. Klar, E. Engel, and S.W. Hell. Breaking abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64066613, 2001.
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun.617-618, 2001.
[CrossRef]

2000

M. Schmidt, M. Nagorni, and S.W. Hell. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 712742-2745, 2000.
[CrossRef]

1999

A. P. Bartko and R. M. Dickson. Imaging Three-Dimensional Single Molecule Orientation, J.Phys.Chem.B. 10311237-11241, 1999.
[CrossRef]

1998

1991

C. J. R. Sheppard and Y. Gong. Improvement in axial resolution by interference confocal microscopy, Optik 87129-132, 1991.Q2

Albrecht, B.

Alivisatos, A. P.

C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature (London) 23741-745, 2005.
[CrossRef]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
[CrossRef]

Bartko, A. P.

A. P. Bartko and R. M. Dickson. Imaging Three-Dimensional Single Molecule Orientation, J.Phys.Chem.B. 10311237-11241, 1999.
[CrossRef]

Billaud, P.

O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
[CrossRef]

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
[CrossRef]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.

Broyer, M.

O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
[CrossRef]

Brunner, C.

Busbee, B. D.

B. D. Busbee, S. O. Obare, and C. J. Murphy. An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15414-417, 2003.
[CrossRef]

Carnie, S.

J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004.
[CrossRef]

Chan, D. Y.C.

J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004.
[CrossRef]

Cremer, C.

Del Fatti, N.

O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
[CrossRef]

Dickson, R. M.

A. P. Bartko and R. M. Dickson. Imaging Three-Dimensional Single Molecule Orientation, J.Phys.Chem.B. 10311237-11241, 1999.
[CrossRef]

Donnert, G.

G. Donnert, C. Eggeling, and S. W. Hell. Major signal increase in fluorescence microscopy through dark-state relaxation, Nature (London) Methods 481-86, 2007.
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91233901-233904, 2003.
[CrossRef] [PubMed]

Eggeling, C.

G. Donnert, C. Eggeling, and S. W. Hell. Major signal increase in fluorescence microscopy through dark-state relaxation, Nature (London) Methods 481-86, 2007.
[CrossRef]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J.Am.Chem.Soc,  1282115-2120, 2006.
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J.Am.Chem.Soc,  1282115-2120, 2006.
[CrossRef] [PubMed]

B. Nikoobakht and M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (nrs) using seedmediated growth method, Chem. Mater. 151957-1962, 2003.
[CrossRef]

Engel, E.

T. A. Klar, E. Engel, and S.W. Hell. Breaking abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64066613, 2001.
[CrossRef]

Failla, A. V.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006.
[CrossRef] [PubMed]

S. Martin, A. V. Failla, U. Spoeri, C. Cremer, and A. Pombo. Measuring the size of biological nanostructures with spatially modulated illumination microscopy, Molecular Biology of the Cell 417275-7283, 2004.

A. V. Failla, U. Spoeri, B. Albrecht, A. Kroll, and C. Cremer. Nanosizing of fluorescent objects by spatially modulated illumination microscopy, Appl. Opt. 417275-7283, 2002.
[CrossRef] [PubMed]

Failla, A.V.

Feldmann, J.

C. Snnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann. Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88077402, 2002.
[CrossRef]

Franzl, T.

C. Snnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann. Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88077402, 2002.
[CrossRef]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun.617-618, 2001.
[CrossRef]

Gong, Y.

C. J. R. Sheppard and Y. Gong. Improvement in axial resolution by interference confocal microscopy, Optik 87129-132, 1991.Q2

Hartschuh, A.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006.
[CrossRef] [PubMed]

F. V. Ignatovich, A. Hartschuh, and L. Novotny. Detection of nanoparticles using optical gradient forces, J. Mod. Opt. 501509-1520, 2003.

He, W.

H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1

Hell, S. W.

G. Donnert, C. Eggeling, and S. W. Hell. Major signal increase in fluorescence microscopy through dark-state relaxation, Nature (London) Methods 481-86, 2007.
[CrossRef]

K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006.
[CrossRef]

S. W. Hell and M. Nagorni. 4pi confocal microscopy with alternate interference, Opt. Lett. 231567-1569, 1998.
[CrossRef]

Hell, S.W.

T. A. Klar, E. Engel, and S.W. Hell. Breaking abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64066613, 2001.
[CrossRef]

M. Schmidt, M. Nagorni, and S.W. Hell. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 712742-2745, 2000.
[CrossRef]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J.Am.Chem.Soc,  1282115-2120, 2006.
[CrossRef] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1

Huntzinger, J. R.

O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
[CrossRef]

Ignatovich, F. V.

F. V. Ignatovich, A. Hartschuh, and L. Novotny. Detection of nanoparticles using optical gradient forces, J. Mod. Opt. 501509-1520, 2003.

Jacobsen, V.

Jahn, R.

K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006.
[CrossRef]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun.617-618, 2001.
[CrossRef]

Klar, T. A.

T. A. Klar, E. Engel, and S.W. Hell. Breaking abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64066613, 2001.
[CrossRef]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
[CrossRef]

Kroll, A.

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91233901-233904, 2003.
[CrossRef] [PubMed]

Liphardt, J.

C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature (London) 23741-745, 2005.
[CrossRef]

Liz-Marzn, L. M.

J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004.
[CrossRef]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.

Martin, S.

S. Martin, A. V. Failla, U. Spoeri, C. Cremer, and A. Pombo. Measuring the size of biological nanostructures with spatially modulated illumination microscopy, Molecular Biology of the Cell 417275-7283, 2004.

Meixner, A. J.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006.
[CrossRef] [PubMed]

Moses, E.

Mulvaney, P.

J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004.
[CrossRef]

Murphy, C. J.

B. D. Busbee, S. O. Obare, and C. J. Murphy. An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15414-417, 2003.
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun.617-618, 2001.
[CrossRef]

Muskens, O. L.

O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
[CrossRef]

Nagorni, M.

M. Schmidt, M. Nagorni, and S.W. Hell. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 712742-2745, 2000.
[CrossRef]

S. W. Hell and M. Nagorni. 4pi confocal microscopy with alternate interference, Opt. Lett. 231567-1569, 1998.
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (nrs) using seedmediated growth method, Chem. Mater. 151957-1962, 2003.
[CrossRef]

Novotny, L.

F. V. Ignatovich, A. Hartschuh, and L. Novotny. Detection of nanoparticles using optical gradient forces, J. Mod. Opt. 501509-1520, 2003.

Obare, S. O.

B. D. Busbee, S. O. Obare, and C. J. Murphy. An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15414-417, 2003.
[CrossRef]

Oron, D.

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.

Pombo, A.

S. Martin, A. V. Failla, U. Spoeri, C. Cremer, and A. Pombo. Measuring the size of biological nanostructures with spatially modulated illumination microscopy, Molecular Biology of the Cell 417275-7283, 2004.

Prez-Juste, J.

J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004.
[CrossRef]

Qian, H.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006.
[CrossRef] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006.
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J.Am.Chem.Soc,  1282115-2120, 2006.
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91233901-233904, 2003.
[CrossRef] [PubMed]

Reinhard, B. M.

C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature (London) 23741-745, 2005.
[CrossRef]

Rizzoli, S. O.

K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006.
[CrossRef]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
[CrossRef]

Sandoghdar, V.

Schmidt, M.

M. Schmidt, M. Nagorni, and S.W. Hell. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 712742-2745, 2000.
[CrossRef]

Schweitzer, A.

Selvin, P. L.

A. Y. Yildiz, M. Tomishige, R. D. Vale and P. L. Selvin. Kinesis Walks Hand-Over-Hand, Science 303676-678, 2004.
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard and Y. Gong. Improvement in axial resolution by interference confocal microscopy, Optik 87129-132, 1991.Q2

Silberberg, Y.

Snnichsen, C.

C. Snnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann. Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88077402, 2002.
[CrossRef]

Soennichsen, C.

C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature (London) 23741-745, 2005.
[CrossRef]

Spoeri, U.

S. Martin, A. V. Failla, U. Spoeri, C. Cremer, and A. Pombo. Measuring the size of biological nanostructures with spatially modulated illumination microscopy, Molecular Biology of the Cell 417275-7283, 2004.

A. V. Failla, U. Spoeri, B. Albrecht, A. Kroll, and C. Cremer. Nanosizing of fluorescent objects by spatially modulated illumination microscopy, Appl. Opt. 417275-7283, 2002.
[CrossRef] [PubMed]

Stoller, P.

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.

Thiberge, S.

Tomishige, M.

A. Y. Yildiz, M. Tomishige, R. D. Vale and P. L. Selvin. Kinesis Walks Hand-Over-Hand, Science 303676-678, 2004.
[CrossRef]

Vale, R. D.

A. Y. Yildiz, M. Tomishige, R. D. Vale and P. L. Selvin. Kinesis Walks Hand-Over-Hand, Science 303676-678, 2004.
[CrossRef]

Valle, F.

O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
[CrossRef]

Vogel, V.

von Plessen, G.

C. Snnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann. Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88077402, 2002.
[CrossRef]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1

Westphal, V.

K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006.
[CrossRef]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
[CrossRef]

Wilk, T.

C. Snnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann. Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88077402, 2002.
[CrossRef]

Willig, K.I.

K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006.
[CrossRef]

Yelin, D.

Yildiz, A. Y.

A. Y. Yildiz, M. Tomishige, R. D. Vale and P. L. Selvin. Kinesis Walks Hand-Over-Hand, Science 303676-678, 2004.
[CrossRef]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1

Adv. Funct. Mater.

J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004.
[CrossRef]

Adv. Mater.

B. D. Busbee, S. O. Obare, and C. J. Murphy. An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15414-417, 2003.
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006.
[CrossRef]

Chem. Commun.

N. R. Jana, L. Gearheart, and C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun.617-618, 2001.
[CrossRef]

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (nrs) using seedmediated growth method, Chem. Mater. 151957-1962, 2003.
[CrossRef]

J. Mod. Opt.

F. V. Ignatovich, A. Hartschuh, and L. Novotny. Detection of nanoparticles using optical gradient forces, J. Mod. Opt. 501509-1520, 2003.

J.Am.Chem.Soc

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J.Am.Chem.Soc,  1282115-2120, 2006.
[CrossRef] [PubMed]

J.Phys.Chem.B.

A. P. Bartko and R. M. Dickson. Imaging Three-Dimensional Single Molecule Orientation, J.Phys.Chem.B. 10311237-11241, 1999.
[CrossRef]

Molecular Biology of the Cell

S. Martin, A. V. Failla, U. Spoeri, C. Cremer, and A. Pombo. Measuring the size of biological nanostructures with spatially modulated illumination microscopy, Molecular Biology of the Cell 417275-7283, 2004.

Nano Lett.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006.
[CrossRef] [PubMed]

Nature (London)

C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature (London) 23741-745, 2005.
[CrossRef]

K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006.
[CrossRef]

Nature (London) Methods

G. Donnert, C. Eggeling, and S. W. Hell. Major signal increase in fluorescence microscopy through dark-state relaxation, Nature (London) Methods 481-86, 2007.
[CrossRef]

Opt. Express

Opt. Lett.

Optik

C. J. R. Sheppard and Y. Gong. Improvement in axial resolution by interference confocal microscopy, Optik 87129-132, 1991.Q2

Phys. Rev. E

T. A. Klar, E. Engel, and S.W. Hell. Breaking abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64066613, 2001.
[CrossRef]

Phys. Rev. Lett.

C. Snnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann. Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88077402, 2002.
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005.
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91233901-233904, 2003.
[CrossRef] [PubMed]

PNAS

H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1

Rev. Sci. Instrum.

M. Schmidt, M. Nagorni, and S.W. Hell. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 712742-2745, 2000.
[CrossRef]

Science

A. Y. Yildiz, M. Tomishige, R. D. Vale and P. L. Selvin. Kinesis Walks Hand-Over-Hand, Science 303676-678, 2004.
[CrossRef]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.

Other

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner. for the institute of Physical Chemistry University of Tuebingen are preparing a manuscript to be called: Plasmon enhanced luminescence in gold nanospheres aggregates.

T. Zchner, A. V. Failla, A. Hartschuh, and A. J. Meixner. A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy. Journal ofMicroscopy Accepted 2007.

C. J. R. Sheppard and D. M. Shotton. Confocal Laser Scanning Microscopy. (Bios Scientific Publishers, 1997).

C. F. Bohren and D. R. Huffman. Absorbtion and Scattering of Light by Small Particles. (WILEY-VCH Verlag Gmbh 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

AFM image of a spatially isolated silver nanorod. Inset left: Profiles of the particle taken along the white dashed lines. Inset right: Image of a representative silver nanorod cut from a transmission electron microscope-micrograph (its aspect ratio equals R ≃ 2). Note that the hight (short axis) of the imaged nanorod equals b = 25 nm.

Fig. 2.
Fig. 2.

Scheme of the optical setup (MC: Mode converter, SF: Spatial filter, BS: Beam splitter, L: Lens, MO: Microscope objective, SC: (x,y)-scanning stage, S: Sample). Inset (I): Intensity profiles in the focal regime of the excitation beams focused on a glass-PVA interface: Linearly polarized Gaussian mode (LPGM), left; azimuthally polarized doughnut mode (APDM), center; radially polarized doughnut mode (RPDM), right. (a)-(c): x and y in-focus intensity cross-sections (continuous/dotted line) taken from the images (d)-(f), (d)-(f): (x, y)-plane in-focus intensity profiles, (g)-(i): (x, z)-plane intensity profiles. Inset (II): Intensity profiles of the parallel beam for the three different modes. Note that the polarization is indicated by arrows.

Fig. 3.
Fig. 3.

CISM images of silver nanorods on a glass cover-slide covered by PVA and excited with an APDM (left) and a RPDM (right), respectively at 514 nm. (a), (b): Experimental data, the insets show the intensity profiles along the white dashed lines. (c), (d): Simulated data. Poissonian noise was added to account for the experimental conditions.

Fig. 4.
Fig. 4.

CISM images of the same three silver nanorods (1,2,3) using an LPGM (a) and a APDM (c). Left column: Experimental data. Right column: Patterns reproduced by the fit algorithm based on Equations 7 (b) and 8 (d).

Fig. 5.
Fig. 5.

CISM images of the same silver nanorod excited with an APDM. The sample is rotated from picture to picture by around 10. (a)-(c): Experimental data. (d)-(f): Fitted patterns reproduced by the model function defined in Eq. 8. To guide the eye the measured angle α 0,1,2 is indicated. (g): Plot of the measured angle α versus the adjusted angle α’.

Tables (3)

Tables Icon

Table 1. Simulated topological evaluations

Tables Icon

Table 2. Relative distances (Dij ij;i, j = 1,2,3) for the three silver nanorods imaged in Fig. 4 excited by a LPGM and an APDM respectively. The results were obtained using the fit algorithm based on Equations 7 and 8

Tables Icon

Table 3. Orientation of the three silver nanorods imaged in Fig. 4(d) using an APDM.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E x y z = E t x y z z > z int
E x y z = E f x y z + E r x y z z z int
I F E 2 ,
I APD E r + E s 2 = E r 2 + E s 2 + 2 E s E r cos ϕ
x 1 = ( x X 1 ) cos ( ϑ ) + ( y Y 1 ) sin ( ϑ )
y 1 = ( x X 1 ) sin ( ϑ ) + ( y Y 1 ) cos ( ϑ )
f LPGM ( x 1 , y 1 ) = 1 + A A ( exp { ( x 1 w x 1 ) 2 ( y 1 w y 1 ) 2 } ) norm
f APDM x 1 y 1 x 1 y 2 x 3 y 3 = 1 + A A { ( G ( x 1 ) + G ( x 2 ) ) x 3 2 exp { ( x 3 w x 3 ) 2 ( y 3 w y 3 ) 2 } } norm

Metrics