Abstract

We present a study characterizing the properties of femtosecond laser nanosurgery applied to individual axons in live Caenorhabditis elegans (C. elegans) using nano-Joule laser pulses at 1 kHz repetition rate. Emphasis is placed on the characterization of the damage threshold, the extent of damage, and the statistical rates of axonal recovery as a function of laser parameters. The ablation threshold decreases with increasing number of pulses applied during nanoaxotomy. This dependency suggests the existence of an incubation effect. In terms of extent of damage, the energy per pulse is found to be a more critical parameter than the number of pulses. Axonal recovery improves when surgery is performed using a large number of low energy pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

Corrections

Frederic Bourgeois and Adela Ben-Yakar, "Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans: erratum," Opt. Express 16, 5963-5963 (2008)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-8-5963

References

  • View by:
  • |
  • |
  • |

  1. P.J. Horner and F.H. Gage, “Regenerating the damaged central nervous system,” Nature 407, 963–970 (2000).
    [Crossref] [PubMed]
  2. M. Kerschensteiner, M.E. Schwab, J.W. Lichtman, and T. Misgeld, “In vivo imaging of axonal degereneration and regeneration in the injured spinal cord,” Nature Med. 11(5), 572–577 (2005).
  3. D.H. Bhatt, S.J. Otto, B. Depoister, and J.R. Fetcho, “Cyclic AMP-induced repair of zebrafish spinal circuits,” Science 305, 254–258 (2004).
    [Crossref] [PubMed]
  4. W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).
  5. M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
    [Crossref]
  6. M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
    [Crossref]
  7. V. Venugopalan, A. Guerra III, K. Hahen, and A. Vogel, “Role of laser-induced plasma formation in pulse cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
    [Crossref] [PubMed]
  8. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” App. Phys. B, 10.1007 (2005).
    [Crossref]
  9. K. König, W. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819–821 (2001).
    [Crossref]
  10. U.K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
    [Crossref] [PubMed]
  11. N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).
  12. A. Heisterkamp, I. Zaharieva Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13, 3690–3696 (2005).
    [Crossref] [PubMed]
  13. S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur, and A.D.T. Samuel, “The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation,” BMC Neuro. 7:30 (2006).
  14. W. Watanabe and N. Arakawa, “Femtosecond laser disruption of subcellular organelles in a living cell,” Opt. Express 12 (18), 4203–4213 (2004).
    [Crossref] [PubMed]
  15. S. Brenner, “The genetics of behaviour,” Brit. Med. Bull. 29, 269–271 (1973).
    [PubMed]
  16. X. Huang, H.J. Cheng, M. Tessier-Lavigne, and Y. Jin, “MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion” Neuron 34, 563–576 (2002).
    [Crossref] [PubMed]
  17. J.G. White, F. Southgate, J.N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode Caenorhabditis elegans.” Phil. Trans. Royal Soc. London Series B. Bio. Scien. 314, 1–340 (1986).
    [Crossref]
  18. M. Chalfie, “The differentiation and function of the touch receptor neurons of Caenorhabditis elegans” Prog. Brain. Res. 105, 179–82 (1995).
    [Crossref] [PubMed]
  19. M. Driscoll and M. Chalfie, “The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration.” Nature 349, 588–593 (1991).
    [Crossref] [PubMed]
  20. H. Urey, “Spot size, depth of focus and diffraction ring intensity formulas for truncated Gaussian beams.” App. Phys. 43 (3), 620–625 (2004).
  21. J.B. Guild, C. Xu, and W.W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence” Appl. Opt. 36 (1), 397–401 (1997).
    [Crossref] [PubMed]
  22. F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).
  23. A. Waller, “Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibers,” Philos Trans R Soc Lond Biol. 140, 423 (1850).
    [Crossref]
  24. B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
    [Crossref] [PubMed]
  25. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation.” Appl. Phys. A 69 [Suppl.], S373–S376 (1999).
    [Crossref]
  26. Y. Lee, M.F. Becker, and R.M. Walser, “Laser-induced damage on single-crystal metal surfaces.” J. Opt. Soc. Am. B Vol.5 No.3, 648–659 (1988).

2006 (1)

F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).

2005 (5)

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

M. Kerschensteiner, M.E. Schwab, J.W. Lichtman, and T. Misgeld, “In vivo imaging of axonal degereneration and regeneration in the injured spinal cord,” Nature Med. 11(5), 572–577 (2005).

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” App. Phys. B, 10.1007 (2005).
[Crossref]

N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).

A. Heisterkamp, I. Zaharieva Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13, 3690–3696 (2005).
[Crossref] [PubMed]

2004 (4)

W. Watanabe and N. Arakawa, “Femtosecond laser disruption of subcellular organelles in a living cell,” Opt. Express 12 (18), 4203–4213 (2004).
[Crossref] [PubMed]

D.H. Bhatt, S.J. Otto, B. Depoister, and J.R. Fetcho, “Cyclic AMP-induced repair of zebrafish spinal circuits,” Science 305, 254–258 (2004).
[Crossref] [PubMed]

M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
[Crossref]

H. Urey, “Spot size, depth of focus and diffraction ring intensity formulas for truncated Gaussian beams.” App. Phys. 43 (3), 620–625 (2004).

2002 (3)

U.K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[Crossref] [PubMed]

V. Venugopalan, A. Guerra III, K. Hahen, and A. Vogel, “Role of laser-induced plasma formation in pulse cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[Crossref] [PubMed]

X. Huang, H.J. Cheng, M. Tessier-Lavigne, and Y. Jin, “MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion” Neuron 34, 563–576 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

P.J. Horner and F.H. Gage, “Regenerating the damaged central nervous system,” Nature 407, 963–970 (2000).
[Crossref] [PubMed]

1999 (2)

M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[Crossref]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation.” Appl. Phys. A 69 [Suppl.], S373–S376 (1999).
[Crossref]

1997 (1)

1995 (1)

M. Chalfie, “The differentiation and function of the touch receptor neurons of Caenorhabditis elegans” Prog. Brain. Res. 105, 179–82 (1995).
[Crossref] [PubMed]

1991 (1)

M. Driscoll and M. Chalfie, “The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration.” Nature 349, 588–593 (1991).
[Crossref] [PubMed]

1988 (1)

Y. Lee, M.F. Becker, and R.M. Walser, “Laser-induced damage on single-crystal metal surfaces.” J. Opt. Soc. Am. B Vol.5 No.3, 648–659 (1988).

1986 (1)

J.G. White, F. Southgate, J.N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode Caenorhabditis elegans.” Phil. Trans. Royal Soc. London Series B. Bio. Scien. 314, 1–340 (1986).
[Crossref]

1973 (1)

S. Brenner, “The genetics of behaviour,” Brit. Med. Bull. 29, 269–271 (1973).
[PubMed]

1850 (1)

A. Waller, “Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibers,” Philos Trans R Soc Lond Biol. 140, 423 (1850).
[Crossref]

Adalbert, R.

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

Addicks, K.

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

Arakawa, N.

Ashkenasi, D.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation.” Appl. Phys. A 69 [Suppl.], S373–S376 (1999).
[Crossref]

Banks, P.S.

M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[Crossref]

Becker, M.F.

Y. Lee, M.F. Becker, and R.M. Walser, “Laser-induced damage on single-crystal metal surfaces.” J. Opt. Soc. Am. B Vol.5 No.3, 648–659 (1988).

Beirowski, B.

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

Ben-Yakar, A.

F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).

M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
[Crossref]

Bhatt, D.H.

D.H. Bhatt, S.J. Otto, B. Depoister, and J.R. Fetcho, “Cyclic AMP-induced repair of zebrafish spinal circuits,” Science 305, 254–258 (2004).
[Crossref] [PubMed]

Brenner, S.

J.G. White, F. Southgate, J.N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode Caenorhabditis elegans.” Phil. Trans. Royal Soc. London Series B. Bio. Scien. 314, 1–340 (1986).
[Crossref]

S. Brenner, “The genetics of behaviour,” Brit. Med. Bull. 29, 269–271 (1973).
[PubMed]

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Chalfie, M.

M. Chalfie, “The differentiation and function of the touch receptor neurons of Caenorhabditis elegans” Prog. Brain. Res. 105, 179–82 (1995).
[Crossref] [PubMed]

M. Driscoll and M. Chalfie, “The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration.” Nature 349, 588–593 (1991).
[Crossref] [PubMed]

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Cheng, H.J.

X. Huang, H.J. Cheng, M. Tessier-Lavigne, and Y. Jin, “MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion” Neuron 34, 563–576 (2002).
[Crossref] [PubMed]

Chisholm, A.

F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).

Chisholm, A.D.

M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
[Crossref]

Chung, S.H.

S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur, and A.D.T. Samuel, “The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation,” BMC Neuro. 7:30 (2006).

Cinar, H.

F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).

M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
[Crossref]

Cinar, H.N.

M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
[Crossref]

Cinar, N.

F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).

Clark, D.A.

S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur, and A.D.T. Samuel, “The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation,” BMC Neuro. 7:30 (2006).

Coleman, M.P.

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

Datta, D.

N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).

Depoister, B.

D.H. Bhatt, S.J. Otto, B. Depoister, and J.R. Fetcho, “Cyclic AMP-induced repair of zebrafish spinal circuits,” Science 305, 254–258 (2004).
[Crossref] [PubMed]

Driscoll, M.

M. Driscoll and M. Chalfie, “The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration.” Nature 349, 588–593 (1991).
[Crossref] [PubMed]

Emmons, S.W.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Feit, M.D.

M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[Crossref]

Fetcho, J.R.

D.H. Bhatt, S.J. Otto, B. Depoister, and J.R. Fetcho, “Cyclic AMP-induced repair of zebrafish spinal circuits,” Science 305, 254–258 (2004).
[Crossref] [PubMed]

Fritzsche, W.

Gabel, C.V.

S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur, and A.D.T. Samuel, “The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation,” BMC Neuro. 7:30 (2006).

Gage, F.H.

P.J. Horner and F.H. Gage, “Regenerating the damaged central nervous system,” Nature 407, 963–970 (2000).
[Crossref] [PubMed]

Grumme, D.S.

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

Guerra III, A.

V. Venugopalan, A. Guerra III, K. Hahen, and A. Vogel, “Role of laser-induced plasma formation in pulse cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[Crossref] [PubMed]

Guild, J.B.

Hahen, K.

V. Venugopalan, A. Guerra III, K. Hahen, and A. Vogel, “Role of laser-induced plasma formation in pulse cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[Crossref] [PubMed]

Heisterkamp, A.

Herman, R.K.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Hodgkin, J.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Horner, P.J.

P.J. Horner and F.H. Gage, “Regenerating the damaged central nervous system,” Nature 407, 963–970 (2000).
[Crossref] [PubMed]

Horvitz, H.R.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Huang, X.

X. Huang, H.J. Cheng, M. Tessier-Lavigne, and Y. Jin, “MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion” Neuron 34, 563–576 (2002).
[Crossref] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” App. Phys. B, 10.1007 (2005).
[Crossref]

Ingber, D. E.

Ingber, D.E.

N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).

Jin, Y.

F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).

M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
[Crossref]

X. Huang, H.J. Cheng, M. Tessier-Lavigne, and Y. Jin, “MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion” Neuron 34, 563–576 (2002).
[Crossref] [PubMed]

Kerschensteiner, M.

M. Kerschensteiner, M.E. Schwab, J.W. Lichtman, and T. Misgeld, “In vivo imaging of axonal degereneration and regeneration in the injured spinal cord,” Nature Med. 11(5), 572–577 (2005).

Kimble, J.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

König, K.

Kumar, S.

LeDuc, P.

N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).

Lee, Y.

Y. Lee, M.F. Becker, and R.M. Walser, “Laser-induced damage on single-crystal metal surfaces.” J. Opt. Soc. Am. B Vol.5 No.3, 648–659 (1988).

Lichtman, J.W.

M. Kerschensteiner, M.E. Schwab, J.W. Lichtman, and T. Misgeld, “In vivo imaging of axonal degereneration and regeneration in the injured spinal cord,” Nature Med. 11(5), 572–577 (2005).

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation.” Appl. Phys. A 69 [Suppl.], S373–S376 (1999).
[Crossref]

Mazur, E.

N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).

A. Heisterkamp, I. Zaharieva Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13, 3690–3696 (2005).
[Crossref] [PubMed]

S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur, and A.D.T. Samuel, “The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation,” BMC Neuro. 7:30 (2006).

Misgeld, T.

M. Kerschensteiner, M.E. Schwab, J.W. Lichtman, and T. Misgeld, “In vivo imaging of axonal degereneration and regeneration in the injured spinal cord,” Nature Med. 11(5), 572–577 (2005).

Nickerson, J. A.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” App. Phys. B, 10.1007 (2005).
[Crossref]

Otto, S.J.

D.H. Bhatt, S.J. Otto, B. Depoister, and J.R. Fetcho, “Cyclic AMP-induced repair of zebrafish spinal circuits,” Science 305, 254–258 (2004).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” App. Phys. B, 10.1007 (2005).
[Crossref]

Perry, M.D.

M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[Crossref]

Ribchester, R.R.

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

Riddle, D.L.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Riemann, W.

Rosenfeld, A.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation.” Appl. Phys. A 69 [Suppl.], S373–S376 (1999).
[Crossref]

Rubenchik, A.M.

M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[Crossref]

Samuel, A.D.T.

S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur, and A.D.T. Samuel, “The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation,” BMC Neuro. 7:30 (2006).

Schaffer, C.B.

N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).

Schwab, M.E.

M. Kerschensteiner, M.E. Schwab, J.W. Lichtman, and T. Misgeld, “In vivo imaging of axonal degereneration and regeneration in the injured spinal cord,” Nature Med. 11(5), 572–577 (2005).

Shen, N.

N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).

Southgate, F.

J.G. White, F. Southgate, J.N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode Caenorhabditis elegans.” Phil. Trans. Royal Soc. London Series B. Bio. Scien. 314, 1–340 (1986).
[Crossref]

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation.” Appl. Phys. A 69 [Suppl.], S373–S376 (1999).
[Crossref]

Stuart, D.C.

M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[Crossref]

Sulston, J.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Tessier-Lavigne, M.

X. Huang, H.J. Cheng, M. Tessier-Lavigne, and Y. Jin, “MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion” Neuron 34, 563–576 (2002).
[Crossref] [PubMed]

Thomson, J.N.

J.G. White, F. Southgate, J.N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode Caenorhabditis elegans.” Phil. Trans. Royal Soc. London Series B. Bio. Scien. 314, 1–340 (1986).
[Crossref]

Tirlapur, U.K.

U.K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[Crossref] [PubMed]

Underwood, J. M.

Urey, H.

H. Urey, “Spot size, depth of focus and diffraction ring intensity formulas for truncated Gaussian beams.” App. Phys. 43 (3), 620–625 (2004).

Venugopalan, V.

V. Venugopalan, A. Guerra III, K. Hahen, and A. Vogel, “Role of laser-induced plasma formation in pulse cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” App. Phys. B, 10.1007 (2005).
[Crossref]

V. Venugopalan, A. Guerra III, K. Hahen, and A. Vogel, “Role of laser-induced plasma formation in pulse cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[Crossref] [PubMed]

Wagner, D.

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

Waller, A.

A. Waller, “Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibers,” Philos Trans R Soc Lond Biol. 140, 423 (1850).
[Crossref]

Walser, R.M.

Y. Lee, M.F. Becker, and R.M. Walser, “Laser-induced damage on single-crystal metal surfaces.” J. Opt. Soc. Am. B Vol.5 No.3, 648–659 (1988).

Ward, S.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Watanabe, W.

Waterston, R.H.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Webb, W.W.

White, J.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

White, J.G.

J.G. White, F. Southgate, J.N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode Caenorhabditis elegans.” Phil. Trans. Royal Soc. London Series B. Bio. Scien. 314, 1–340 (1986).
[Crossref]

Wood, W.B.

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

Xu, C.

Yanik, F.

F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).

Yanik, M.F.

M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
[Crossref]

Yanovsky, V.

M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[Crossref]

Zaharieva Maxwell, I.

App. Phys. (1)

H. Urey, “Spot size, depth of focus and diffraction ring intensity formulas for truncated Gaussian beams.” App. Phys. 43 (3), 620–625 (2004).

App. Phys. B, (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” App. Phys. B, 10.1007 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation.” Appl. Phys. A 69 [Suppl.], S373–S376 (1999).
[Crossref]

BMC Neurosci. (1)

B. Beirowski, R. Adalbert, D. Wagner, D.S. Grumme, K. Addicks, R.R. Ribchester, and M.P. Coleman, “The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves,” BMC Neurosci. 6 (6), (2005).
[Crossref] [PubMed]

Brit. Med. Bull. (1)

S. Brenner, “The genetics of behaviour,” Brit. Med. Bull. 29, 269–271 (1973).
[PubMed]

IEEE J. of Sel. Top. in Quan. Elect. (1)

F. Yanik, H. Cinar, N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, “Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy.” IEEE J. of Sel. Top. in Quan. Elect.,  Vol.12 No.6 (2006).

J. Appl. Phys. (1)

M.D. Perry, D.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Y. Lee, M.F. Becker, and R.M. Walser, “Laser-induced damage on single-crystal metal surfaces.” J. Opt. Soc. Am. B Vol.5 No.3, 648–659 (1988).

Mech. Chem. Biosyst. (1)

N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in cells using a femtosecond laser nanocissor,” Mech. Chem. Biosyst. 2, 17 (2005).

Nature (4)

M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 882 (2004).
[Crossref]

M. Driscoll and M. Chalfie, “The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration.” Nature 349, 588–593 (1991).
[Crossref] [PubMed]

U.K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[Crossref] [PubMed]

P.J. Horner and F.H. Gage, “Regenerating the damaged central nervous system,” Nature 407, 963–970 (2000).
[Crossref] [PubMed]

Nature Med. (1)

M. Kerschensteiner, M.E. Schwab, J.W. Lichtman, and T. Misgeld, “In vivo imaging of axonal degereneration and regeneration in the injured spinal cord,” Nature Med. 11(5), 572–577 (2005).

Neuron (1)

X. Huang, H.J. Cheng, M. Tessier-Lavigne, and Y. Jin, “MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion” Neuron 34, 563–576 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phil. Trans. Royal Soc. London Series B. Bio. Scien. (1)

J.G. White, F. Southgate, J.N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode Caenorhabditis elegans.” Phil. Trans. Royal Soc. London Series B. Bio. Scien. 314, 1–340 (1986).
[Crossref]

Philos Trans R Soc Lond Biol. (1)

A. Waller, “Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibers,” Philos Trans R Soc Lond Biol. 140, 423 (1850).
[Crossref]

Phys. Rev. Lett. (1)

V. Venugopalan, A. Guerra III, K. Hahen, and A. Vogel, “Role of laser-induced plasma formation in pulse cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[Crossref] [PubMed]

Prog. Brain. Res. (1)

M. Chalfie, “The differentiation and function of the touch receptor neurons of Caenorhabditis elegans” Prog. Brain. Res. 105, 179–82 (1995).
[Crossref] [PubMed]

Science (1)

D.H. Bhatt, S.J. Otto, B. Depoister, and J.R. Fetcho, “Cyclic AMP-induced repair of zebrafish spinal circuits,” Science 305, 254–258 (2004).
[Crossref] [PubMed]

Other (2)

W.B. Wood, S. Brenner, R.K. Herman, S.W. Emmons, J. White, J. Sulston, H.R. Horvitz, J. Kimble, S. Ward, J. Hodgkin, R.H. Waterston, M. Chalfie, and D.L. Riddle, The nematode Caenorhabditis elegans, (Cold Spring Harbor, 1988).

S.H. Chung, D.A. Clark, C.V. Gabel, E. Mazur, and A.D.T. Samuel, “The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation,” BMC Neuro. 7:30 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Sketch of all GABA-ergic neurons in C. elegans (head to the right). The 13 VDs and the 6 DDs are the motor neurons. The insert shows myosin filaments underlying an axon [17]. (b) Sketch of soft touch neurons in C. elegans (head to the left) [18]. ALM and PLM come in pairs; only one of each is accessible during surgery.

Fig. 2.
Fig. 2.

Setup where nanosurgery is incorporated in a fluorescence microscope.

Fig. 3.
Fig. 3.

Fluorescence images of an axon of a GFP-labeled PLML neuron (a) before axotomy, (b) right after the axotomy at mid-body (100 pulses of 1.9 J/cm2), and (c) 12 hours after the axotomy showing regrowth of the severed axon and reconnection to its distal end.

Fig. 4.
Fig. 4.

Images of regrown ALML axon 72 hours after axotomy on a youg adult worm (300 pulses of 1.9 J/cm2) at three different focal depths. The first two images show the connection to the degenerated distal end and the third image shows how the process continues to regrow most probably in search of a healthier connection. (The distal and proximal ends are respectively on the upper and lower parts of the pictures).

Fig. 5.
Fig. 5.

Fluorescence images of photobleaching at 1.3 J/cm2, 25 pulses on CZ5062 , (a) before laser exposure, (b) right after exposure, and (c) 2 minutes after exposure. The irradiated spot loses its signal due to photobleaching but remains intact. The axon recovers its luminescence within 2 minutes by the GFP diffusion within the cytoplasm.

Fig. 6.
Fig. 6.

Fluorescence images of the extent of damage induced by fs-laser ablation using 800 pulses at 1.7 J/cm2. (a) before ablation, (b) right after ablation with GFP spilling in the created cavity, and (c) 3 minutes after ablation. The dark region in muscle fibers shows the extent of damage to surrounding tissue. The diameter of this area is approximately equal to the distance between the ends of the cut axon.

Fig. 7.
Fig. 7.

Ablation thresholds measured as a function of number of pulses. Solid line shows the logarithmic fit following Eq. (2). The corresponding fluences (energy per area) and irradiances are included in the right side axis assuming a theoretical spot size of 620 nm and a pulse duration of 430 fs. The error bars indicate the variance of the threshold measurements on 10 axons for different pulse trains.

Fig. 8.
Fig. 8.

Extent of photo-damage induced by fs-laser ablation of axons in C. elegans as a function of pulse energy and total number of pulses.

Fig. 9.
Fig. 9.

Fluorescence images of the extent of damage, (a-d) at 8 nJ for 100, 200, 400 and 800 pulses, (e-h) for 400 pulses at 6, 8, 10 and 12 nJ.

Fig. 10.
Fig. 10.

Axonal recovery probabilities of touch neurons. Red bars on the left are survival rates after anesthesia and surgery. Green bars on the right are axonal recovery rates.

Tables (2)

Tables Icon

Table 1. Damage mechanisms in fs-laser nanosurgery at kHz repetition rate [8]. The irradiance thresholds and the free electron densities were estimated by Vogel et al. for 100 fs, 800 nm laser pulses focused with 1.3 NA lens [8].

Tables Icon

Table 2. Statistics of axonal recovery of touch neurons and survival rate of worms after laser axotomy performed using different pulse energies and total number of pulses. Relative rates refer to the number of worms fulfilling the requirement of the previous column.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F N = F 1 + ( F F 1 ) N k ,
E N = E 1 + ( E E 1 ) N k ,

Metrics