Abstract

We propose and numerically analyse an asynchronous digital optical regenerator using a single-EAM loop and a novel neighbor-combine approach. It effectively re-synchronizes input signals with arbitrary phases to the local clock, and regenerates signals with high amplitude fluctuation and polarization mode dispersion. We demonstrate the application of this regenerator for 4×40 Gbit/s WDM to 160 Gbit/s OTDM conversion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Tomkos, A. Tzanakaki, J. Leuthold, A. D. Ellis, D. Bimberg, P. Petropoulos, D. Simeonidou, S. Tsadka, and P. Monteiro, "Transparent ring interconnection using multi-wavelength processing switches," Proc. ICTON (2006), Mo.B1.5.
  2. A. D. Ellis, T. Widdowson, I. D. Phillips, and W. A. Pender, "High speed OTDM networks employing electro-optic modulators," IEICE Trans. Electron.E 81-C, 1301-1308 (1998).
  3. M. Kato, K. Fujiura, and T. Kurihara, "Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber," Proc. CLEO (2002), CPDB4.
  4. D. Cotter, and A. D. Ellis, "Asynchronous digital optical regeneration and networks," J. Lightwave Technol. 16, 2068-2080 (1998).
    [CrossRef]
  5. M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
    [CrossRef]
  6. I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
    [CrossRef]
  7. L. Huo, Y. Yang, Y. Nan, C. Lou, and Y. Gao, "A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator," J. Lightwave Technol. 24, 3035-3044 (2006).
    [CrossRef]
  8. G. Gavioli and P. Bayvel, "Investigation and comparison of high-speed synchronisation techniques for optical packet networks," Proc NOC (2001), 311-316.

2006 (1)

1999 (1)

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

1998 (2)

A. D. Ellis, T. Widdowson, I. D. Phillips, and W. A. Pender, "High speed OTDM networks employing electro-optic modulators," IEICE Trans. Electron.E 81-C, 1301-1308 (1998).

D. Cotter, and A. D. Ellis, "Asynchronous digital optical regeneration and networks," J. Lightwave Technol. 16, 2068-2080 (1998).
[CrossRef]

1992 (1)

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Banu, M.

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Cotter, D.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

D. Cotter, and A. D. Ellis, "Asynchronous digital optical regeneration and networks," J. Lightwave Technol. 16, 2068-2080 (1998).
[CrossRef]

Dunlop, A. E.

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

Ellis, A. D.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

D. Cotter, and A. D. Ellis, "Asynchronous digital optical regeneration and networks," J. Lightwave Technol. 16, 2068-2080 (1998).
[CrossRef]

A. D. Ellis, T. Widdowson, I. D. Phillips, and W. A. Pender, "High speed OTDM networks employing electro-optic modulators," IEICE Trans. Electron.E 81-C, 1301-1308 (1998).

Gao, Y.

Gunning, P.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Huo, L.

Kelly, A. E.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Lou, C.

Lucek, J. K.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Moodie, D. G.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

Nan, Y.

Pender, W. A.

A. D. Ellis, T. Widdowson, I. D. Phillips, and W. A. Pender, "High speed OTDM networks employing electro-optic modulators," IEICE Trans. Electron.E 81-C, 1301-1308 (1998).

Phillips, I. D.

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

A. D. Ellis, T. Widdowson, I. D. Phillips, and W. A. Pender, "High speed OTDM networks employing electro-optic modulators," IEICE Trans. Electron.E 81-C, 1301-1308 (1998).

Widdowson, T.

A. D. Ellis, T. Widdowson, I. D. Phillips, and W. A. Pender, "High speed OTDM networks employing electro-optic modulators," IEICE Trans. Electron.E 81-C, 1301-1308 (1998).

Yang, Y.

E (1)

A. D. Ellis, T. Widdowson, I. D. Phillips, and W. A. Pender, "High speed OTDM networks employing electro-optic modulators," IEICE Trans. Electron.E 81-C, 1301-1308 (1998).

Electron. Lett. (1)

M. Banu and A. E. Dunlop, "Clock recovery circuits with instantaneous locking," Electron. Lett. 28, 2127-2130 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. D. Phillips, P. Gunning, A. D. Ellis, J. K. Lucek, D. G. Moodie, A. E. Kelly, and D. Cotter, "10-Gb/s asynchronous digital optical regeneratior," IEEE Photon. Technol. Lett. 11, 892-894 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Other (3)

I. Tomkos, A. Tzanakaki, J. Leuthold, A. D. Ellis, D. Bimberg, P. Petropoulos, D. Simeonidou, S. Tsadka, and P. Monteiro, "Transparent ring interconnection using multi-wavelength processing switches," Proc. ICTON (2006), Mo.B1.5.

M. Kato, K. Fujiura, and T. Kurihara, "Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber," Proc. CLEO (2002), CPDB4.

G. Gavioli and P. Bayvel, "Investigation and comparison of high-speed synchronisation techniques for optical packet networks," Proc NOC (2001), 311-316.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Functional diagram of ADORE. PD: photodiode, G: gate, T: bit period, S: switch.

Fig. 2.
Fig. 2.

Simplified ADORE using single-EAM loop with neighbor-combination. OC: optical circulator, BF: birefringent fiber, FR: Faraday rotator, SMF: single mode fiber and PBS: polarization beam splitter.

Fig. 3.
Fig. 3.

Schematic diagram of the path lengths experienced by the 4 sampling clock phases in the single EAM-loop ADORE. LHS: left hand side, RHS: right hand side, Green: BF, Blue: loop.

Fig. 4.
Fig. 4.

(a) Optical power and EOF of single EAM ADORE with neighbor-combination, (b) conventional 4-EAM ADORE at relative delay between remote and local signals.

Fig. 5.
Fig. 5.

EOF comparison of single EAM ADORE, conventional 4-EAM ADORE and 2-EAM ADORE at different input RZ signal with timing jitter peak-to-peak (pk-pk).

Fig. 6.
Fig. 6.

EOF improvement of re-synchronized signals. Inset: 40 Gbit/s optical eye diagrams of (a) input degraded signal at amplitude fluctuation of 4 dB and (b) re-synchronized signal (worst case).

Fig. 7.
Fig. 7.

EOF improvement of re-synchronized signals. Inset: 40 Gbit/s optical eye diagrams of (a) input degraded signal at DGD of 12.5 ps and (b) re-synchronized signal (worst case).

Fig. 8.
Fig. 8.

WDM-to-OTDM conversion using four ADOREs.

Fig. 9.
Fig. 9.

(a), (b) normalized EOF of the WDM-to-OTDM converter. Optical eye diagrams of (c) 40Gbit/s input signal and (d) 160Gbit/s output at the worst case.

Metrics