Abstract

Experimental one-way decoy pulse quantum key distribution running continuously for 60 hours is demonstrated over a fiber distance of 20km. We employ a decoy protocol which involves one weak decoy pulse and a vacuum pulse. The obtained secret key rate is on average over 10kbps. This is the highest rate reported using this decoy protocol over this fiber distance and duration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  2. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, New York, 1984), pp. 175179.
  3. C. H. Bennett, F. Bessette, G. Brassard, L. Savail and J. Smolin, "Experimental quantum cryptography," J. Cryptol. 53-28 (1992).
  4. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67km with a plug & play system," New J. Phys. 4 41.1-41.8 (2002).
    [CrossRef]
  5. C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
    [CrossRef]
  6. X.-B. Wang, "Beating the photon pulse-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503-1-4 (2005) and H.-K. Lo, X. Ma and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504-1-4 (2005).
    [CrossRef] [PubMed]
  7. G. Brassard, N. L¨utkenhaus, T. Mor and B. C. Sanders, "Limits on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
    [CrossRef] [PubMed]
  8. W.-Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett. 91, 057901-1-4 (2003).
    [CrossRef] [PubMed]
  9. D. Gottesman, H.-K. Lo, N. Lutkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comp. 5, 325-360 (2004).
  10. Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian, "Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502-1-4 (2006).
    [CrossRef] [PubMed]
  11. Z. L. Yuan, A. W. Sharpe and A. J. Shields, "Unconditionally secure one-way quantum key distribution using decoy pulses," Appl. Phys. Lett. 90, 011118-1-3 (2007).
    [CrossRef]
  12. C. Gobby, Z. L. Yuan and A. J. Shields, Elec. Lett. "Unconditionally secure quantum key distribution over 50 km of standard telecom fiber," Electron. Lett. 40, 1603-1605 (2004).
    [CrossRef]
  13. X. Ma, B. Qi, Y. Zhao and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012306-1-15 (2005).
    [CrossRef]
  14. C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang and J.-W. Pan, "Experimental long-distance decoy-state quantum key distribution based on polarization encoding," Phys. Rev. Lett. 98, 010505-1-4 (2007).
    [CrossRef] [PubMed]
  15. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S-W. Nam and J. E. Nordholt, "Long-distance decoy-State quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 010505-1-4 (2007).
    [CrossRef]
  16. G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, "Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters," Appl. Opt. 37, 2272 (1998).
    [CrossRef]
  17. M. Hayashi, "Upper bounds of eavesdropper’s performances in finite-length code with decoy method," quantph/ 0702250 (2007).

2004 (3)

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

D. Gottesman, H.-K. Lo, N. Lutkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comp. 5, 325-360 (2004).

C. Gobby, Z. L. Yuan and A. J. Shields, Elec. Lett. "Unconditionally secure quantum key distribution over 50 km of standard telecom fiber," Electron. Lett. 40, 1603-1605 (2004).
[CrossRef]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

2000 (1)

G. Brassard, N. L¨utkenhaus, T. Mor and B. C. Sanders, "Limits on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

1998 (1)

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Savail and J. Smolin, "Experimental quantum cryptography," J. Cryptol. 53-28 (1992).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

Electron. Lett. (1)

C. Gobby, Z. L. Yuan and A. J. Shields, Elec. Lett. "Unconditionally secure quantum key distribution over 50 km of standard telecom fiber," Electron. Lett. 40, 1603-1605 (2004).
[CrossRef]

J. Cryptol. (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Savail and J. Smolin, "Experimental quantum cryptography," J. Cryptol. 53-28 (1992).

Phys. Rev. Lett. (1)

G. Brassard, N. L¨utkenhaus, T. Mor and B. C. Sanders, "Limits on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

Quant. Inf. Comp. (1)

D. Gottesman, H.-K. Lo, N. Lutkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comp. 5, 325-360 (2004).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other (10)

C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, New York, 1984), pp. 175179.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, "Quantum key distribution over 67km with a plug & play system," New J. Phys. 4 41.1-41.8 (2002).
[CrossRef]

W.-Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett. 91, 057901-1-4 (2003).
[CrossRef] [PubMed]

X.-B. Wang, "Beating the photon pulse-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503-1-4 (2005) and H.-K. Lo, X. Ma and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504-1-4 (2005).
[CrossRef] [PubMed]

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian, "Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502-1-4 (2006).
[CrossRef] [PubMed]

Z. L. Yuan, A. W. Sharpe and A. J. Shields, "Unconditionally secure one-way quantum key distribution using decoy pulses," Appl. Phys. Lett. 90, 011118-1-3 (2007).
[CrossRef]

M. Hayashi, "Upper bounds of eavesdropper’s performances in finite-length code with decoy method," quantph/ 0702250 (2007).

X. Ma, B. Qi, Y. Zhao and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012306-1-15 (2005).
[CrossRef]

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang and J.-W. Pan, "Experimental long-distance decoy-state quantum key distribution based on polarization encoding," Phys. Rev. Lett. 98, 010505-1-4 (2007).
[CrossRef] [PubMed]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S-W. Nam and J. E. Nordholt, "Long-distance decoy-State quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 010505-1-4 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the optical layout of the one-way quantum key distribution system. The system employs BB84 phase encoding and the weak + vacuum decoy protocol. Attn: attenuator, IM: intensity modulator, PC: polarization controller, WDM: wavelength division multiplexer, FS: fiber stretcher. The QKD optics are driven by field programmable gate arrays (FPGAs) electronics. Fast (MHz) electronic pulse routes: solid arrows; slow (Hz) electronic pulse routes: dotted arrows.

Fig. 2.
Fig. 2.

Experimentally measured data for the 60 hours experiment. (a)Transmittances of the signal, decoy and vacuum. (b) The quantum bit error rates of the the signal (Eμ ) and the non-zero decoy (Eν ) as a function of time.

Fig. 3.
Fig. 3.

The final secure bit rate as a function of time. The extremely long term drift in the key rate is attributed to long term day to day temperature drift in the laboratory. Inset: distribution of the secure bit rates for the keys.

Fig. 4.
Fig. 4.

(a)(i) Frequency count distribution of the quantum transmittance ratio Qν /Qμ . (ii) The secure bit rate simulated as a function of Qν /Qμ (solid line); experimentally measured data (red crosses). (b)(i) Frequency count distribution of the vacuum count probability Y 0. (ii) The secure bit rate as a function of Y 0 (solid black line); experimentally measured data (red crosses). Also shown for comparison is the single decoy protocol secure bit rate (dotted line). The dotted lines in both Figs. show the expected values in the absence of PNS attacks, artifacts and manipulations of the vacuum count rates.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q 1 L = μ 2 ν 2 μ 2 μ ν { Q ν L e ν Q ν e μ ν 2 μ 2 Y 0 U μ 2 ν 2 μ 2 }
ε 1 U = ε μ Q μ Q 1 L Y 0 L e μ Q 1 L
R R L = q N μ { Q μ f ( ε μ ) H 2 ( ε μ ) + Q 1 L ( 1 H 2 ( ε 1 U ) ) } t

Metrics