Abstract

Experimental one-way decoy pulse quantum key distribution running continuously for 60 hours is demonstrated over a fiber distance of 20km. We employ a decoy protocol which involves one weak decoy pulse and a vacuum pulse. The obtained secret key rate is on average over 10kbps. This is the highest rate reported using this decoy protocol over this fiber distance and duration.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields
Opt. Express 16(23) 18790-18797 (2008)

Decoy-state quantum key distribution with polarized photons over 200 km

Yang Liu, Teng-Yun Chen, Jian Wang, Wen-Qi Cai, Xu Wan, Luo-Kan Chen, Jin-Hong Wang, Shu-Bin Liu, Hao Liang, Lin Yang, Cheng-Zhi Peng, Kai Chen, Zeng-Bing Chen, and Jian-Wei Pan
Opt. Express 18(8) 8587-8594 (2010)

Decoy-state method for subcarrier-multiplexed frequency-coded quantum key distribution

Sudeshna Bhattacharya and Pradeep Kumar Krishnamurthy
J. Opt. Soc. Am. B 30(4) 782-787 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, New York, 1984), pp. 175179.
  3. C. H. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin, “Experimental quantum cryptography,” J. Cryp-tol. 53–28 (1992).
  4. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a plug & play system,” New J. Phys. 441.1–41.8 (2002).
    [Crossref]
  5. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
    [Crossref]
  6. X.-B. Wang, “Beating the photon pulse-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503-1–4 (2005) and H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504-1–4 (2005).
    [Crossref] [PubMed]
  7. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limits on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [Crossref] [PubMed]
  8. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901-1–4 (2003).
    [Crossref] [PubMed]
  9. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 5, 325–360 (2004).
  10. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502-1–4 (2006).
    [Crossref] [PubMed]
  11. Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure one-way quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118-1–3 (2007).
    [Crossref]
  12. C. Gobby, Z. L. Yuan, and A. J. Shields, Elec. Lett. “Unconditionally secure quantum key distribution over 50 km of standard telecom fiber,” Electron. Lett. 40, 1603–1605 (2004).
    [Crossref]
  13. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012306-1–15 (2005).
    [Crossref]
  14. C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
    [Crossref] [PubMed]
  15. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
    [Crossref]
  16. G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272 (1998).
    [Crossref]
  17. M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with decoy method,” quant-ph/0702250 (2007).

2007 (3)

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure one-way quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118-1–3 (2007).
[Crossref]

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

2006 (1)

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502-1–4 (2006).
[Crossref] [PubMed]

2005 (2)

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012306-1–15 (2005).
[Crossref]

X.-B. Wang, “Beating the photon pulse-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503-1–4 (2005) and H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504-1–4 (2005).
[Crossref] [PubMed]

X.-B. Wang, “Beating the photon pulse-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503-1–4 (2005) and H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504-1–4 (2005).
[Crossref] [PubMed]

2004 (3)

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 5, 325–360 (2004).

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, Elec. Lett. “Unconditionally secure quantum key distribution over 50 km of standard telecom fiber,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

2003 (1)

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901-1–4 (2003).
[Crossref] [PubMed]

2002 (2)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a plug & play system,” New J. Phys. 441.1–41.8 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

2000 (1)

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limits on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

1998 (1)

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin, “Experimental quantum cryptography,” J. Cryp-tol. 53–28 (1992).

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin, “Experimental quantum cryptography,” J. Cryp-tol. 53–28 (1992).

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, New York, 1984), pp. 175179.

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin, “Experimental quantum cryptography,” J. Cryp-tol. 53–28 (1992).

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limits on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin, “Experimental quantum cryptography,” J. Cryp-tol. 53–28 (1992).

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, New York, 1984), pp. 175179.

Chen, K.

X.-B. Wang, “Beating the photon pulse-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503-1–4 (2005) and H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504-1–4 (2005).
[Crossref] [PubMed]

Gao, W.-B.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Gautier, J. D.

Gisin, N.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a plug & play system,” New J. Phys. 441.1–41.8 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272 (1998).
[Crossref]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, Elec. Lett. “Unconditionally secure quantum key distribution over 50 km of standard telecom fiber,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

Gottesman, D.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 5, 325–360 (2004).

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a plug & play system,” New J. Phys. 441.1–41.8 (2002).
[Crossref]

Harrington, J. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Hayashi, M.

M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with decoy method,” quant-ph/0702250 (2007).

Hiskett, P. A.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Hughes, R. J.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Hwang, W.-Y.

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901-1–4 (2003).
[Crossref] [PubMed]

Lita, A. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Lo, H.-K.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502-1–4 (2006).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012306-1–15 (2005).
[Crossref]

X.-B. Wang, “Beating the photon pulse-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503-1–4 (2005) and H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504-1–4 (2005).
[Crossref] [PubMed]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 5, 325–360 (2004).

Lütkenhaus, N.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 5, 325–360 (2004).

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limits on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Ma, H.-Xin.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Ma, X.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502-1–4 (2006).
[Crossref] [PubMed]

X.-B. Wang, “Beating the photon pulse-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503-1–4 (2005) and H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504-1–4 (2005).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012306-1–15 (2005).
[Crossref]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limits on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Nam, S-W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Nordholt, J. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Pan, J.-W.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Peng, C.-Z.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Peterson, C. G.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Preskill, J.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 5, 325–360 (2004).

Qi, B.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502-1–4 (2006).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012306-1–15 (2005).
[Crossref]

Qian, L.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502-1–4 (2006).
[Crossref] [PubMed]

Ribordy, G.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a plug & play system,” New J. Phys. 441.1–41.8 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272 (1998).
[Crossref]

Rice, P. R.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Rosenberg, D.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limits on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Savail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin, “Experimental quantum cryptography,” J. Cryp-tol. 53–28 (1992).

Sharpe, A. W.

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure one-way quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118-1–3 (2007).
[Crossref]

Shields, A. J.

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure one-way quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118-1–3 (2007).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, Elec. Lett. “Unconditionally secure quantum key distribution over 50 km of standard telecom fiber,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin, “Experimental quantum cryptography,” J. Cryp-tol. 53–28 (1992).

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a plug & play system,” New J. Phys. 441.1–41.8 (2002).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Wang, X.-B.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

X.-B. Wang, “Beating the photon pulse-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503-1–4 (2005) and H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504-1–4 (2005).
[Crossref] [PubMed]

Yang, D.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Yang, T.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Yin, H.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Yuan, Z. L.

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure one-way quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118-1–3 (2007).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, Elec. Lett. “Unconditionally secure quantum key distribution over 50 km of standard telecom fiber,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

Zbinden, H.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a plug & play system,” New J. Phys. 441.1–41.8 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272 (1998).
[Crossref]

Zeng, H.-P.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Zhang, J.

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502-1–4 (2006).
[Crossref] [PubMed]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012306-1–15 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure one-way quantum key distribution using decoy pulses,” Appl. Phys. Lett. 90, 011118-1–3 (2007).
[Crossref]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122km of standard telecom fiber,” Appl. Phys. Lett. 84, 3762–3764 (2004).
[Crossref]

Electron. Lett. (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, Elec. Lett. “Unconditionally secure quantum key distribution over 50 km of standard telecom fiber,” Electron. Lett. 40, 1603–1605 (2004).
[Crossref]

J. Cryp-tol. (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin, “Experimental quantum cryptography,” J. Cryp-tol. 53–28 (1992).

New J. Phys. (1)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67km with a plug & play system,” New J. Phys. 441.1–41.8 (2002).
[Crossref]

Phys. Rev. A (1)

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012306-1–15 (2005).
[Crossref]

Phys. Rev. Lett. (6)

C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-Xin. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref] [PubMed]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita , S-W. Nam, and J. E. Nordholt, “Long-distance decoy-State quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010505-1–4 (2007).
[Crossref]

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502-1–4 (2006).
[Crossref] [PubMed]

X.-B. Wang, “Beating the photon pulse-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503-1–4 (2005) and H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504-1–4 (2005).
[Crossref] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limits on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901-1–4 (2003).
[Crossref] [PubMed]

Quant. Inf. Comp. (1)

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 5, 325–360 (2004).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Other (2)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, New York, 1984), pp. 175179.

M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with decoy method,” quant-ph/0702250 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the optical layout of the one-way quantum key distribution system. The system employs BB84 phase encoding and the weak + vacuum decoy protocol. Attn: attenuator, IM: intensity modulator, PC: polarization controller, WDM: wavelength division multiplexer, FS: fiber stretcher. The QKD optics are driven by field programmable gate arrays (FPGAs) electronics. Fast (MHz) electronic pulse routes: solid arrows; slow (Hz) electronic pulse routes: dotted arrows.

Fig. 2.
Fig. 2.

Experimentally measured data for the 60 hours experiment. (a)Transmittances of the signal, decoy and vacuum. (b) The quantum bit error rates of the the signal (Eμ ) and the non-zero decoy (Eν ) as a function of time.

Fig. 3.
Fig. 3.

The final secure bit rate as a function of time. The extremely long term drift in the key rate is attributed to long term day to day temperature drift in the laboratory. Inset: distribution of the secure bit rates for the keys.

Fig. 4.
Fig. 4.

(a)(i) Frequency count distribution of the quantum transmittance ratio Qν /Qμ . (ii) The secure bit rate simulated as a function of Qν /Qμ (solid line); experimentally measured data (red crosses). (b)(i) Frequency count distribution of the vacuum count probability Y 0. (ii) The secure bit rate as a function of Y 0 (solid black line); experimentally measured data (red crosses). Also shown for comparison is the single decoy protocol secure bit rate (dotted line). The dotted lines in both Figs. show the expected values in the absence of PNS attacks, artifacts and manipulations of the vacuum count rates.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q 1 L = μ 2 ν 2 μ 2 μ ν { Q ν L e ν Q ν e μ ν 2 μ 2 Y 0 U μ 2 ν 2 μ 2 }
ε 1 U = ε μ Q μ Q 1 L Y 0 L e μ Q 1 L
R R L = q N μ { Q μ f ( ε μ ) H 2 ( ε μ ) + Q 1 L ( 1 H 2 ( ε 1 U ) ) } t

Metrics