Abstract

We report structural and optical properties of three-dimensional periodic metallic woodpile structures obtained by direct laser writing in dielectric photoresist SU-8 and subsequent electroless coating by a thin Ni film. Signatures of photonic stop gaps were observed in optical reflection spectra of the structures at infrared wavelengths. This study demonstrates that the combination of DLW and chemical infiltration of metals is attractive as a simple and cost-efficient method for the fabrication of metalo-dielectric photonic crystals.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sigalas, C. Chan, K. Ho, and C. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
    [Crossref]
  2. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
    [Crossref] [PubMed]
  3. I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
    [Crossref]
  4. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
    [Crossref]
  5. J. T. K. Wana and C. T. Chan, “Thermal emission by metallic photonic crystal slabs,” Appl. Phys. Lett. 89, 41915 (2006).
    [Crossref]
  6. T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
    [Crossref]
  7. A. Ovsianikov, A. Ostendorf, and B. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applicationsin photonics and biomedicine,” Appl. Surf. Sci. (2007), in press, available online, doi:10:1016/j.apsuc.2007.01.058.
  8. V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2002).
    [Crossref]
  9. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal emplates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
    [Crossref] [PubMed]
  10. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005).
    [Crossref]
  11. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
    [Crossref] [PubMed]
  12. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecomu-nications spectral range,” Appl. Phys. A 82, 683–688 (2006).
    [Crossref]
  13. M. Lindblom, H. Hertz, and A. Holmberg, “SU-8 plating mold for high-spect-ratio nickel zone plates,” Micro-electron. Eng. (2007), in press, available online, doi:10:1016/j.mee.2007.01.109.
  14. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, and A. I. S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14, 800–809 (2006).
    [Crossref] [PubMed]
  15. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35–69 (2001).
    [Crossref]
  16. V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of photonic crystals,” in “3D laser microfabrication,” , H. Misawa and S. Juodkazis, eds. (Willey-VCH Verlag, 2006), chap. 10, pp. 239–286.
  17. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral potonic crystal structures recordedby femtosecond pulses,” J. Non-Crystal. Solids 352, 2390–2394 (2006).
    [Crossref]
  18. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional horizontal circular spiral photonic crystals with stopgaps below 1μm,” Appl. Phys. Lett. 88, 221101 (2005).
    [Crossref]
  19. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
    [Crossref]
  20. S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region,” Physica B 279, 142–149 (2000).
    [Crossref]
  21. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals.” Science 305, 227–9 (2004).
    [Crossref] [PubMed]
  22. J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap.” Nature 417, 52–5 (2002).
    [Crossref] [PubMed]
  23. R. Tarozaitė and A. Selskis, “Electroless nickel plating with Cu2+ and dicarboxylic acids additives,” Trans. IMF 84, 105–112 (2006).
  24. H. Ong, X. Yuan, S. Tao, and S. C. Tjin, “Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist,” Opt. Lett. 31, 1367–1369 (2006).
    [Crossref] [PubMed]
  25. T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, “The effect of soft bake temperature on the polymerization of SU-8 photoresist,” J. Micromech. Microeng. 16, 1819–1824 (2006).
    [Crossref]
  26. M. Ordal, L. Long, J. Bell, S. Bell, R. Alexander, and C. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1120 (1983).
    [Crossref] [PubMed]
  27. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
    [Crossref]
  28. T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, “Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006).
    [Crossref]
  29. R. Tarozaitė, M. Kurtinaitienė, A. Dz̆iu̅vė, and Z. Jusys, “Composition, microstructure and magnetic properties of electroless-plated thin Co-P films,” Surf. Coat. Technol. 115, 57–65 (1999).
    [Crossref]
  30. A. M. Luneckas, R. K. Tarozaitė, and I. K. Genutienė, “Properties of palladium coatings deposited using hy-pophosphite,” Protection of metals (in Russian) 4, 496–498 (1971).
  31. M. Šalkauskas and A. Vaškelis, Chemical Metallizing of Plastics, (in Russian), (Khimiya, Leningrad, 1985).
  32. A. Vaškelis, J. Jačiauskienė, A. Jagminienė, and E. Norkus, “Obtaining of 1B group metal films by novel electro-less deposition method,” Sol. State Sciences 4, 1299–1304 (2002).
    [Crossref]

2006 (8)

J. T. K. Wana and C. T. Chan, “Thermal emission by metallic photonic crystal slabs,” Appl. Phys. Lett. 89, 41915 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecomu-nications spectral range,” Appl. Phys. A 82, 683–688 (2006).
[Crossref]

F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, and A. I. S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14, 800–809 (2006).
[Crossref] [PubMed]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral potonic crystal structures recordedby femtosecond pulses,” J. Non-Crystal. Solids 352, 2390–2394 (2006).
[Crossref]

R. Tarozaitė and A. Selskis, “Electroless nickel plating with Cu2+ and dicarboxylic acids additives,” Trans. IMF 84, 105–112 (2006).

H. Ong, X. Yuan, S. Tao, and S. C. Tjin, “Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist,” Opt. Lett. 31, 1367–1369 (2006).
[Crossref] [PubMed]

T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, “The effect of soft bake temperature on the polymerization of SU-8 photoresist,” J. Micromech. Microeng. 16, 1819–1824 (2006).
[Crossref]

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, “Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006).
[Crossref]

2005 (3)

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional horizontal circular spiral photonic crystals with stopgaps below 1μm,” Appl. Phys. Lett. 88, 221101 (2005).
[Crossref]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005).
[Crossref]

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[Crossref]

2004 (4)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
[Crossref] [PubMed]

T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal emplates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[Crossref] [PubMed]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals.” Science 305, 227–9 (2004).
[Crossref] [PubMed]

2003 (1)

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

2002 (3)

A. Vaškelis, J. Jačiauskienė, A. Jagminienė, and E. Norkus, “Obtaining of 1B group metal films by novel electro-less deposition method,” Sol. State Sciences 4, 1299–1304 (2002).
[Crossref]

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap.” Nature 417, 52–5 (2002).
[Crossref] [PubMed]

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2002).
[Crossref]

2001 (1)

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35–69 (2001).
[Crossref]

2000 (2)

S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region,” Physica B 279, 142–149 (2000).
[Crossref]

I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[Crossref]

1999 (1)

R. Tarozaitė, M. Kurtinaitienė, A. Dz̆iu̅vė, and Z. Jusys, “Composition, microstructure and magnetic properties of electroless-plated thin Co-P films,” Surf. Coat. Technol. 115, 57–65 (1999).
[Crossref]

1996 (1)

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

1995 (1)

M. Sigalas, C. Chan, K. Ho, and C. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[Crossref]

1994 (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

1983 (1)

1971 (1)

A. M. Luneckas, R. K. Tarozaitė, and I. K. Genutienė, “Properties of palladium coatings deposited using hy-pophosphite,” Protection of metals (in Russian) 4, 496–498 (1971).

Albrand, G.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[Crossref]

Alexander, R.

Anhoj, T. A.

T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, “The effect of soft bake temperature on the polymerization of SU-8 photoresist,” J. Micromech. Microeng. 16, 1819–1824 (2006).
[Crossref]

Baker, C.

T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Bell, J.

Bell, S.

Biswas, R.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap.” Nature 417, 52–5 (2002).
[Crossref] [PubMed]

I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Blanco, A.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
[Crossref] [PubMed]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Chan, C.

M. Sigalas, C. Chan, K. Ho, and C. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[Crossref]

Chan, C. T.

J. T. K. Wana and C. T. Chan, “Thermal emission by metallic photonic crystal slabs,” Appl. Phys. Lett. 89, 41915 (2006).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Chichkov, B.

A. Ovsianikov, A. Ostendorf, and B. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applicationsin photonics and biomedicine,” Appl. Surf. Sci. (2007), in press, available online, doi:10:1016/j.apsuc.2007.01.058.

Chiyoda, K.

Cumming, D. R. S.

T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
[Crossref] [PubMed]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Drysdale, T. D.

T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Dz?iu¯ve, A.

R. Tarozaitė, M. Kurtinaitienė, A. Dz̆iu̅vė, and Z. Jusys, “Composition, microstructure and magnetic properties of electroless-plated thin Co-P films,” Surf. Coat. Technol. 115, 57–65 (1999).
[Crossref]

Elalmy, Z.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[Crossref]

El-Kady, I.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap.” Nature 417, 52–5 (2002).
[Crossref] [PubMed]

I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[Crossref]

Enkrich, C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Enoch, S.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[Crossref]

Escoubas, L.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[Crossref]

Fleming, J.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap.” Nature 417, 52–5 (2002).
[Crossref] [PubMed]

Formanek, F.

Genutiene, I. K.

A. M. Luneckas, R. K. Tarozaitė, and I. K. Genutienė, “Properties of palladium coatings deposited using hy-pophosphite,” Protection of metals (in Russian) 4, 496–498 (1971).

Gregory, I.

T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Hertz, H.

M. Lindblom, H. Hertz, and A. Holmberg, “SU-8 plating mold for high-spect-ratio nickel zone plates,” Micro-electron. Eng. (2007), in press, available online, doi:10:1016/j.mee.2007.01.109.

Ho, K.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap.” Nature 417, 52–5 (2002).
[Crossref] [PubMed]

I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[Crossref]

M. Sigalas, C. Chan, K. Ho, and C. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[Crossref]

Ho, K. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Holmberg, A.

M. Lindblom, H. Hertz, and A. Holmberg, “SU-8 plating mold for high-spect-ratio nickel zone plates,” Micro-electron. Eng. (2007), in press, available online, doi:10:1016/j.mee.2007.01.109.

Hubner, J.

T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, “The effect of soft bake temperature on the polymerization of SU-8 photoresist,” J. Micromech. Microeng. 16, 1819–1824 (2006).
[Crossref]

Imada, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals.” Science 305, 227–9 (2004).
[Crossref] [PubMed]

Jaciauskiene, J.

A. Vaškelis, J. Jačiauskienė, A. Jagminienė, and E. Norkus, “Obtaining of 1B group metal films by novel electro-less deposition method,” Sol. State Sciences 4, 1299–1304 (2002).
[Crossref]

Jagminiene, A.

A. Vaškelis, J. Jačiauskienė, A. Jagminienė, and E. Norkus, “Obtaining of 1B group metal films by novel electro-less deposition method,” Sol. State Sciences 4, 1299–1304 (2002).
[Crossref]

Jorgensen, A. M.

T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, “The effect of soft bake temperature on the polymerization of SU-8 photoresist,” J. Micromech. Microeng. 16, 1819–1824 (2006).
[Crossref]

Juodkazis, S.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecomu-nications spectral range,” Appl. Phys. A 82, 683–688 (2006).
[Crossref]

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, “Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral potonic crystal structures recordedby femtosecond pulses,” J. Non-Crystal. Solids 352, 2390–2394 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional horizontal circular spiral photonic crystals with stopgaps below 1μm,” Appl. Phys. Lett. 88, 221101 (2005).
[Crossref]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005).
[Crossref]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal emplates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[Crossref] [PubMed]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35–69 (2001).
[Crossref]

V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of photonic crystals,” in “3D laser microfabrication,” , H. Misawa and S. Juodkazis, eds. (Willey-VCH Verlag, 2006), chap. 10, pp. 239–286.

Jusys, Z.

R. Tarozaitė, M. Kurtinaitienė, A. Dz̆iu̅vė, and Z. Jusys, “Composition, microstructure and magnetic properties of electroless-plated thin Co-P films,” Surf. Coat. Technol. 115, 57–65 (1999).
[Crossref]

Kanayama, T.

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2002).
[Crossref]

Kawata, A. I. S.

Koch, W.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Kondo, T.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, “Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006).
[Crossref]

Kurtinaitiene, M.

R. Tarozaitė, M. Kurtinaitienė, A. Dz̆iu̅vė, and Z. Jusys, “Composition, microstructure and magnetic properties of electroless-plated thin Co-P films,” Surf. Coat. Technol. 115, 57–65 (1999).
[Crossref]

Lin, S.

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap.” Nature 417, 52–5 (2002).
[Crossref] [PubMed]

Lindblom, M.

M. Lindblom, H. Hertz, and A. Holmberg, “SU-8 plating mold for high-spect-ratio nickel zone plates,” Micro-electron. Eng. (2007), in press, available online, doi:10:1016/j.mee.2007.01.109.

Linfield, E. H.

T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Long, L.

Luneckas, A. M.

A. M. Luneckas, R. K. Tarozaitė, and I. K. Genutienė, “Properties of palladium coatings deposited using hy-pophosphite,” Protection of metals (in Russian) 4, 496–498 (1971).

Marcinkevicius, A.

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35–69 (2001).
[Crossref]

Matsuo, S.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, “Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005).
[Crossref]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35–69 (2001).
[Crossref]

V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of photonic crystals,” in “3D laser microfabrication,” , H. Misawa and S. Juodkazis, eds. (Willey-VCH Verlag, 2006), chap. 10, pp. 239–286.

Meisel, D. C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Miklyaev, Y. V.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Misawa, H.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecomu-nications spectral range,” Appl. Phys. A 82, 683–688 (2006).
[Crossref]

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, “Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral potonic crystal structures recordedby femtosecond pulses,” J. Non-Crystal. Solids 352, 2390–2394 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional horizontal circular spiral photonic crystals with stopgaps below 1μm,” Appl. Phys. Lett. 88, 221101 (2005).
[Crossref]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005).
[Crossref]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal emplates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[Crossref] [PubMed]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35–69 (2001).
[Crossref]

V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of photonic crystals,” in “3D laser microfabrication,” , H. Misawa and S. Juodkazis, eds. (Willey-VCH Verlag, 2006), chap. 10, pp. 239–286.

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral potonic crystal structures recordedby femtosecond pulses,” J. Non-Crystal. Solids 352, 2390–2394 (2006).
[Crossref]

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, “Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecomu-nications spectral range,” Appl. Phys. A 82, 683–688 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional horizontal circular spiral photonic crystals with stopgaps below 1μm,” Appl. Phys. Lett. 88, 221101 (2005).
[Crossref]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005).
[Crossref]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal emplates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[Crossref] [PubMed]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35–69 (2001).
[Crossref]

V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of photonic crystals,” in “3D laser microfabrication,” , H. Misawa and S. Juodkazis, eds. (Willey-VCH Verlag, 2006), chap. 10, pp. 239–286.

Moroz, A.

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2002).
[Crossref]

Noda, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals.” Science 305, 227–9 (2004).
[Crossref] [PubMed]

S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region,” Physica B 279, 142–149 (2000).
[Crossref]

Norkus, E.

A. Vaškelis, J. Jačiauskienė, A. Jagminienė, and E. Norkus, “Obtaining of 1B group metal films by novel electro-less deposition method,” Sol. State Sciences 4, 1299–1304 (2002).
[Crossref]

Ogawa, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals.” Science 305, 227–9 (2004).
[Crossref] [PubMed]

Okano, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals.” Science 305, 227–9 (2004).
[Crossref] [PubMed]

Ong, H.

Ordal, M.

Ostendorf, A.

A. Ovsianikov, A. Ostendorf, and B. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applicationsin photonics and biomedicine,” Appl. Surf. Sci. (2007), in press, available online, doi:10:1016/j.apsuc.2007.01.058.

Ovsianikov, A.

A. Ovsianikov, A. Ostendorf, and B. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applicationsin photonics and biomedicine,” Appl. Surf. Sci. (2007), in press, available online, doi:10:1016/j.apsuc.2007.01.058.

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
[Crossref] [PubMed]

Poborchii, V.

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2002).
[Crossref]

Šalkauskas, M.

M. Šalkauskas and A. Vaškelis, Chemical Metallizing of Plastics, (in Russian), (Khimiya, Leningrad, 1985).

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecomu-nications spectral range,” Appl. Phys. A 82, 683–688 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral potonic crystal structures recordedby femtosecond pulses,” J. Non-Crystal. Solids 352, 2390–2394 (2006).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional horizontal circular spiral photonic crystals with stopgaps below 1μm,” Appl. Phys. Lett. 88, 221101 (2005).
[Crossref]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005).
[Crossref]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal emplates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[Crossref] [PubMed]

Selskis, A.

R. Tarozaitė and A. Selskis, “Electroless nickel plating with Cu2+ and dicarboxylic acids additives,” Trans. IMF 84, 105–112 (2006).

Sickmiller, M. E.

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

Sievenpiper, D. F.

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

Sigalas, M.

I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[Crossref]

M. Sigalas, C. Chan, K. Ho, and C. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Simon, J.-J.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[Crossref]

Soukoulis, C.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
[Crossref] [PubMed]

I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[Crossref]

M. Sigalas, C. Chan, K. Ho, and C. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[Crossref]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Tada, T.

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2002).
[Crossref]

Takeyasu, N.

Tanaka, T.

Tao, S.

Tarozaite, R.

R. Tarozaitė and A. Selskis, “Electroless nickel plating with Cu2+ and dicarboxylic acids additives,” Trans. IMF 84, 105–112 (2006).

R. Tarozaitė, M. Kurtinaitienė, A. Dz̆iu̅vė, and Z. Jusys, “Composition, microstructure and magnetic properties of electroless-plated thin Co-P films,” Surf. Coat. Technol. 115, 57–65 (1999).
[Crossref]

Tarozaite, R. K.

A. M. Luneckas, R. K. Tarozaitė, and I. K. Genutienė, “Properties of palladium coatings deposited using hy-pophosphite,” Protection of metals (in Russian) 4, 496–498 (1971).

Tjin, S. C.

Torchio, F. L. P.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[Crossref]

Tribe, W.R.

T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Vaškelis, A.

A. Vaškelis, J. Jačiauskienė, A. Jagminienė, and E. Norkus, “Obtaining of 1B group metal films by novel electro-less deposition method,” Sol. State Sciences 4, 1299–1304 (2002).
[Crossref]

M. Šalkauskas and A. Vaškelis, Chemical Metallizing of Plastics, (in Russian), (Khimiya, Leningrad, 1985).

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
[Crossref] [PubMed]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Wana, J. T. K.

J. T. K. Wana and C. T. Chan, “Thermal emission by metallic photonic crystal slabs,” Appl. Phys. Lett. 89, 41915 (2006).
[Crossref]

Ward, C.

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
[Crossref] [PubMed]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Yablonovitch, E.

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

Yoshimoto, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals.” Science 305, 227–9 (2004).
[Crossref] [PubMed]

Yuan, X.

Zauner, D. A.

T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, “The effect of soft bake temperature on the polymerization of SU-8 photoresist,” J. Micromech. Microeng. 16, 1819–1824 (2006).
[Crossref]

Adv. Mat. (1)

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spiral three-dimensional photonic crystals for telecomu-nications spectral range,” Appl. Phys. A 82, 683–688 (2006).
[Crossref]

Appl. Phys. Lett. (6)

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[Crossref]

J. T. K. Wana and C. T. Chan, “Thermal emission by metallic photonic crystal slabs,” Appl. Phys. Lett. 89, 41915 (2006).
[Crossref]

T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W.R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2002).
[Crossref]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional horizontal circular spiral photonic crystals with stopgaps below 1μm,” Appl. Phys. Lett. 88, 221101 (2005).
[Crossref]

J. Micromech. Microeng. (1)

T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, “The effect of soft bake temperature on the polymerization of SU-8 photoresist,” J. Micromech. Microeng. 16, 1819–1824 (2006).
[Crossref]

J. Non-Crystal. Solids (1)

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral potonic crystal structures recordedby femtosecond pulses,” J. Non-Crystal. Solids 352, 2390–2394 (2006).
[Crossref]

J. Photochem. Photobiol. C: Photochemistry Reviews (1)

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and characterization of photonic crystals,” J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35–69 (2001).
[Crossref]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–7 (2004).
[Crossref] [PubMed]

Nature (1)

J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap.” Nature 417, 52–5 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, “Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography,” New J. Phys. 8, 250 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (2)

M. Sigalas, C. Chan, K. Ho, and C. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[Crossref]

I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[Crossref]

Phys. Rev. Lett. (1)

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

Physica B (1)

S. Noda, “Three-dimensional photonic crystals operating at optical wavelength region,” Physica B 279, 142–149 (2000).
[Crossref]

Protection of metals (in Russian) (1)

A. M. Luneckas, R. K. Tarozaitė, and I. K. Genutienė, “Properties of palladium coatings deposited using hy-pophosphite,” Protection of metals (in Russian) 4, 496–498 (1971).

Science (1)

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals.” Science 305, 227–9 (2004).
[Crossref] [PubMed]

Sol. State Sciences (1)

A. Vaškelis, J. Jačiauskienė, A. Jagminienė, and E. Norkus, “Obtaining of 1B group metal films by novel electro-less deposition method,” Sol. State Sciences 4, 1299–1304 (2002).
[Crossref]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[Crossref]

Surf. Coat. Technol. (1)

R. Tarozaitė, M. Kurtinaitienė, A. Dz̆iu̅vė, and Z. Jusys, “Composition, microstructure and magnetic properties of electroless-plated thin Co-P films,” Surf. Coat. Technol. 115, 57–65 (1999).
[Crossref]

Trans. IMF (1)

R. Tarozaitė and A. Selskis, “Electroless nickel plating with Cu2+ and dicarboxylic acids additives,” Trans. IMF 84, 105–112 (2006).

Other (4)

M. Šalkauskas and A. Vaškelis, Chemical Metallizing of Plastics, (in Russian), (Khimiya, Leningrad, 1985).

A. Ovsianikov, A. Ostendorf, and B. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applicationsin photonics and biomedicine,” Appl. Surf. Sci. (2007), in press, available online, doi:10:1016/j.apsuc.2007.01.058.

V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of photonic crystals,” in “3D laser microfabrication,” , H. Misawa and S. Juodkazis, eds. (Willey-VCH Verlag, 2006), chap. 10, pp. 239–286.

M. Lindblom, H. Hertz, and A. Holmberg, “SU-8 plating mold for high-spect-ratio nickel zone plates,” Micro-electron. Eng. (2007), in press, available online, doi:10:1016/j.mee.2007.01.109.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

3D woodpile architecture and its main parameters. The scheme shows SU-8 woodpile structure fabricated on a glass substrate and coated by Ni. The main woodpile parameters are: Δd- distance between the centers of nearest two ellipsoidal rods on the same plane, Δz-vertical separation between the centers of rods belonging to two nearest planes, dxy and dz - minor and major axes of the ellipsoidal cross-section of the rod, m - total number of woodpile layers. Notice the Δ d /2 parallel displacement between the rods in every second plane. Incidence of the focused laser beam and drawing of the woodpile by substrate translation during the DLW fabrication of SU-8 template are also illustrated schematically.

Fig. 2.
Fig. 2.

SEM images of a SU-8 woodpile sample with lattice parameters Δd = 4.0μm, Δz = 1.6μm, size (90×90)μm2, thickness 10 layers, coated by a Ni layer with thickness of 0.3±0.05 μm, fabricated at a laser pulse energy of (a,b) 12 nJ (at the sample), (c,d) at a lower laser pulse energy of 8.5 nJ.

Fig. 3.
Fig. 3.

SEM images of a SU-8 woodpile sample with slightly downscaled lattice parameters Δd = 3.0μm, Δz = 1.0μm, size, thickness and coating conditions identical to the sample shown in the previous Figure, fabricated at a laser pulse energy of (a,b) 8 nJ, (c,d) 10.0 nJ.

Fig. 4.
Fig. 4.

Experimentally measured and numerically simulated reflection spectra of 3D woodpile structures coated by Ni.

Metrics