Abstract

A simple all-fiber widely tunable phosphosilicate Raman fiber laser (RFL) of high efficiency has been developed. The laser has more than 50 nm tuning range, and generates up to 3.2 W of output power with 72% maximum slope efficiency. The output power is almost constant in the range 1258–1303 nm. The width and the spectral power density of the RFL output spectrum can be controlled by the detuning of its cavity fiber Bragg gratings (FBGs) thus being optimized for efficient frequency doubling.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Dianov and I. A. Bufetov et al. “Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber,” Opt. Lett. 25, 402–404 (2000).
    [CrossRef]
  2. Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, “Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser,” Opt. Express 12(9), 1843–1847 (2004).
    [CrossRef]
  3. D. Georgiev and V.P. Gapontsev et al. “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005).
    [CrossRef] [PubMed]
  4. S. Cierullieset al., “Widely tunable CW Raman fiber laser supported by switchable FBG resonators,” European Conference on Optical Communication, Rimini, Italy, Paper Tu3.2.3, pp. 224–225, 2003
  5. S. Cierullies, E. Lim, and E. Brinkmeyer, “All-fiber widely tunable Raman laser in a combined linear and Sagnac-loop configuration,” in Proc. of OFC 2005, paper OME11.
  6. Y.-G. Han, D. S. Moon, Y. Chung, and S. B. Lee, “Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method,” Opt. Express 13, 6330 (2005).
    [CrossRef] [PubMed]
  7. S. A. E. Lewis, V. Chernikov, and J. R. Taylor, “Fibre-optic tunable CW Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
    [CrossRef]
  8. P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37(8), 491–492 (2001).
    [CrossRef]
  9. E. M. Dianov and M. V. Grekov, et al. “CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett. 33(18), 1542–1544 (1997).
    [CrossRef]
  10. A. S. Kurkov and E. M. Dianov, et al. “High-power fibre Raman lasers emitting in the 1.22 —1.34-μm range,” Quantum Electron. 30(9), 791–793 (2000).
    [CrossRef]
  11. S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. “Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature,” Quantum Electron. 33(12), 1096–1100, 2003.
    [CrossRef]
  12. D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, “1480–1485 nm cascaded CW Raman fiber laser,” Proc. of CLEO2000, p. 302, paper CWK20.
  13. M. R. Mokhtaret al. “Fiber Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509 (2003).
    [CrossRef]
  14. S. R. Abdullina et al. “Tunable Ytterbium-doped fiber laser,” Quantum Electron. (2007), submitted.
  15. S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1–6), 329–335 (2003).
    [CrossRef]
  16. S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42(12A), L1439–L1441, (2003).
    [CrossRef]
  17. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006)
    [CrossRef]
  18. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, (2007), in print.
    [CrossRef]

2006 (1)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006)
[CrossRef]

2005 (2)

2004 (1)

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, “Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser,” Opt. Express 12(9), 1843–1847 (2004).
[CrossRef]

2003 (4)

S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. “Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature,” Quantum Electron. 33(12), 1096–1100, 2003.
[CrossRef]

M. R. Mokhtaret al. “Fiber Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1–6), 329–335 (2003).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42(12A), L1439–L1441, (2003).
[CrossRef]

2001 (1)

P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37(8), 491–492 (2001).
[CrossRef]

2000 (4)

D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, “1480–1485 nm cascaded CW Raman fiber laser,” Proc. of CLEO2000, p. 302, paper CWK20.

E. M. Dianov and I. A. Bufetov et al. “Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber,” Opt. Lett. 25, 402–404 (2000).
[CrossRef]

S. A. E. Lewis, V. Chernikov, and J. R. Taylor, “Fibre-optic tunable CW Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

A. S. Kurkov and E. M. Dianov, et al. “High-power fibre Raman lasers emitting in the 1.22 —1.34-μm range,” Quantum Electron. 30(9), 791–793 (2000).
[CrossRef]

1997 (1)

E. M. Dianov and M. V. Grekov, et al. “CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett. 33(18), 1542–1544 (1997).
[CrossRef]

Abdullina, S. R.

S. R. Abdullina et al. “Tunable Ytterbium-doped fiber laser,” Quantum Electron. (2007), submitted.

Babin, S. A.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006)
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1–6), 329–335 (2003).
[CrossRef]

S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. “Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature,” Quantum Electron. 33(12), 1096–1100, 2003.
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, (2007), in print.
[CrossRef]

Brinkmeyer, E.

S. Cierullies, E. Lim, and E. Brinkmeyer, “All-fiber widely tunable Raman laser in a combined linear and Sagnac-loop configuration,” in Proc. of OFC 2005, paper OME11.

Bufetov, I. A.

Chang, D. I.

D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, “1480–1485 nm cascaded CW Raman fiber laser,” Proc. of CLEO2000, p. 302, paper CWK20.

Chernikov, V.

S. A. E. Lewis, V. Chernikov, and J. R. Taylor, “Fibre-optic tunable CW Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

Chung, Y.

Churkin, D. V.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006)
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1–6), 329–335 (2003).
[CrossRef]

S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. “Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature,” Quantum Electron. 33(12), 1096–1100, 2003.
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, (2007), in print.
[CrossRef]

Cierullies, S.

S. Cierullieset al., “Widely tunable CW Raman fiber laser supported by switchable FBG resonators,” European Conference on Optical Communication, Rimini, Italy, Paper Tu3.2.3, pp. 224–225, 2003

S. Cierullies, E. Lim, and E. Brinkmeyer, “All-fiber widely tunable Raman laser in a combined linear and Sagnac-loop configuration,” in Proc. of OFC 2005, paper OME11.

Dianov, E. M.

E. M. Dianov and I. A. Bufetov et al. “Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber,” Opt. Lett. 25, 402–404 (2000).
[CrossRef]

A. S. Kurkov and E. M. Dianov, et al. “High-power fibre Raman lasers emitting in the 1.22 —1.34-μm range,” Quantum Electron. 30(9), 791–793 (2000).
[CrossRef]

E. M. Dianov and M. V. Grekov, et al. “CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett. 33(18), 1542–1544 (1997).
[CrossRef]

Feng, Y.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, “Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser,” Opt. Express 12(9), 1843–1847 (2004).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42(12A), L1439–L1441, (2003).
[CrossRef]

Gapontsev, V.P.

Georgiev, D.

Grekov, M. V.

E. M. Dianov and M. V. Grekov, et al. “CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett. 33(18), 1542–1544 (1997).
[CrossRef]

Han, Y.-G.

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, “Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser,” Opt. Express 12(9), 1843–1847 (2004).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42(12A), L1439–L1441, (2003).
[CrossRef]

Ismagulov, A. E.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006)
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, (2007), in print.
[CrossRef]

Jeon, M. Y.

D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, “1480–1485 nm cascaded CW Raman fiber laser,” Proc. of CLEO2000, p. 302, paper CWK20.

Kablukov, S. I.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006)
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, (2007), in print.
[CrossRef]

Kim, K. H.

D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, “1480–1485 nm cascaded CW Raman fiber laser,” Proc. of CLEO2000, p. 302, paper CWK20.

Kurkov, A. S.

S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. “Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature,” Quantum Electron. 33(12), 1096–1100, 2003.
[CrossRef]

A. S. Kurkov and E. M. Dianov, et al. “High-power fibre Raman lasers emitting in the 1.22 —1.34-μm range,” Quantum Electron. 30(9), 791–793 (2000).
[CrossRef]

Lee, H. K.

D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, “1480–1485 nm cascaded CW Raman fiber laser,” Proc. of CLEO2000, p. 302, paper CWK20.

Lee, S. B.

Lewis, S. A. E.

S. A. E. Lewis, V. Chernikov, and J. R. Taylor, “Fibre-optic tunable CW Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

Lim, E.

S. Cierullies, E. Lim, and E. Brinkmeyer, “All-fiber widely tunable Raman laser in a combined linear and Sagnac-loop configuration,” in Proc. of OFC 2005, paper OME11.

Mokhtar, M. R.

M. R. Mokhtaret al. “Fiber Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509 (2003).
[CrossRef]

Moon, D. S.

Podivilov, E. V.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006)
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1–6), 329–335 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, (2007), in print.
[CrossRef]

Potapov, V. V.

S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. “Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature,” Quantum Electron. 33(12), 1096–1100, 2003.
[CrossRef]

Reeves-Hall, P. C.

P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37(8), 491–492 (2001).
[CrossRef]

Shirakawa, A.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, “Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser,” Opt. Express 12(9), 1843–1847 (2004).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42(12A), L1439–L1441, (2003).
[CrossRef]

Taylor, J. R.

P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37(8), 491–492 (2001).
[CrossRef]

S. A. E. Lewis, V. Chernikov, and J. R. Taylor, “Fibre-optic tunable CW Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

Ueda, K.-I.

Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, “Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser,” Opt. Express 12(9), 1843–1847 (2004).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42(12A), L1439–L1441, (2003).
[CrossRef]

Electron. Lett. (3)

P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37(8), 491–492 (2001).
[CrossRef]

E. M. Dianov and M. V. Grekov, et al. “CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett. 33(18), 1542–1544 (1997).
[CrossRef]

M. R. Mokhtaret al. “Fiber Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42(12A), L1439–L1441, (2003).
[CrossRef]

Opt. Commun. (2)

S. A. E. Lewis, V. Chernikov, and J. R. Taylor, “Fibre-optic tunable CW Raman laser operating around 1.3 μm,” Opt. Commun. 182, 403–405 (2000).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1–6), 329–335 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

E. M. Dianov and I. A. Bufetov et al. “Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber,” Opt. Lett. 25, 402–404 (2000).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006)
[CrossRef]

Proc. of CLEO (1)

D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, “1480–1485 nm cascaded CW Raman fiber laser,” Proc. of CLEO2000, p. 302, paper CWK20.

Quantum Electron. (2)

A. S. Kurkov and E. M. Dianov, et al. “High-power fibre Raman lasers emitting in the 1.22 —1.34-μm range,” Quantum Electron. 30(9), 791–793 (2000).
[CrossRef]

S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. “Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature,” Quantum Electron. 33(12), 1096–1100, 2003.
[CrossRef]

Other (4)

S. Cierullieset al., “Widely tunable CW Raman fiber laser supported by switchable FBG resonators,” European Conference on Optical Communication, Rimini, Italy, Paper Tu3.2.3, pp. 224–225, 2003

S. Cierullies, E. Lim, and E. Brinkmeyer, “All-fiber widely tunable Raman laser in a combined linear and Sagnac-loop configuration,” in Proc. of OFC 2005, paper OME11.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, (2007), in print.
[CrossRef]

S. R. Abdullina et al. “Tunable Ytterbium-doped fiber laser,” Quantum Electron. (2007), submitted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TFBG scheme.

Fig. 2
Fig. 2

TRFL setup

Fig. 3.
Fig. 3.

RFL performances at fixed pump (~1109 nm) at Stokes wavelengths (~1300 nm). (a) RFL output power: red dots – residual pump poweer, black dots – Stokes wave output power. (b) RFL output spectrum at different pump power: 2.7, 3.6, 4.6, 5.7, and 6.6 W (from black to green line correspondingly).

Fig. 4.
Fig. 4.

(a) TRFL generation wavelength vs YDFL pump wavelength (b) TRFL output power vs wavelength at 3.6 W pump power.

Fig. 5.
Fig. 5.

(a) TRFL output power at cavity FBGs detuning. (b) TRFL output power at fixed pump wavelength.

Fig. 6.
Fig. 6.

RFL output spectrum at different FBGs detuning: -0.43 nm (black curve), -0.27 nm (red curve), -0.02 nm (blue curve), 0.28 nm (purple curve), 0.75 nm (green curve). Pump power is 3.6 W.

Metrics