Abstract

A simple all-fiber widely tunable phosphosilicate Raman fiber laser (RFL) of high efficiency has been developed. The laser has more than 50 nm tuning range, and generates up to 3.2 W of output power with 72% maximum slope efficiency. The output power is almost constant in the range 1258–1303 nm. The width and the spectral power density of the RFL output spectrum can be controlled by the detuning of its cavity fiber Bragg gratings (FBGs) thus being optimized for efficient frequency doubling.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. M. Dianov, I. A. Bufetov,  et al. "Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber," Opt. Lett. 25, 402-404 (2000).
    [CrossRef]
  2. Y. Feng, S. Huang, A. Shirakawa, and K.-I. Ueda, "Multiple-color cw visible lasers by frequency sum-mixing in a cascading Raman fiber laser," Opt. Express 12, 1843-1847 (2004).
    [CrossRef]
  3. D. Georgiev, V.P. Gapontsev,  et al. "Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm," Opt. Express 13, 6772-6776 (2005).
    [CrossRef] [PubMed]
  4. S. Cierullies,  et al., "Widely tunable CW Raman fiber laser supported by switchable FBG resonators," European Conference on Optical Communication, Rimini, Italy, Paper Tu3.2.3, pp. 224-225, 2003
  5. S. Cierullies, E. Lim, and E. Brinkmeyer, "All-fiber widely tunable Raman laser in a combined linear and Sagnac-loop configuration," in Proc. of OFC 2005, paper OME11.
  6. Y.-G. Han, D. S. Moon, Y. Chung, and S. B. Lee, "Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method," Opt. Express 13, 6330 (2005).
    [CrossRef] [PubMed]
  7. S. A. E. Lewis, V. Chernikov, and J. R. Taylor, "Fibre-optic tunable CW Raman laser operating around 1.3 μm," Opt. Commun. 182, 403-405 (2000).
    [CrossRef]
  8. P. C. Reeves-Hall and J. R. Taylor, "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm," Electron. Lett. 37, 491-492 (2001).
    [CrossRef]
  9. E. M. Dianov, M. V. Grekov,  et al. "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
    [CrossRef]
  10. A. S. Kurkov, E. M. Dianov,  et al. "High-power fibre Raman lasers emitting in the 1.22 —1.34-μm range," Quantum Electron. 30, 791-793 (2000).
    [CrossRef]
  11. S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. "Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature," Quantum Electron. 33, 1096-1100 (2003).
    [CrossRef]
  12. D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, "1480-1485 nm cascaded CW Raman fiber laser," Proc. of CLEO 2000, p. 302, paper CWK20.
  13. M. R. Mokhtar,  et al. "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
    [CrossRef]
  14. S. R. Abdullina,  et al. "Tunable Ytterbium-doped fiber laser," Quantum Electron. (2007), submitted.
  15. S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
    [CrossRef]
  16. S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, "Generation of 10.5 W, 1178nm Laser based on Phosphosilicate Raman Fiber Laser," Jpn. J. Appl. Phys. 42, L1439-L1441 (2003).
    [CrossRef]
  17. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Spectral broadening in Raman fiber lasers," Opt. Lett. 31, 3007-3009 (2006).
    [CrossRef]
  18. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24, (2007), in print.
    [CrossRef]

2007

S. R. Abdullina,  et al. "Tunable Ytterbium-doped fiber laser," Quantum Electron. (2007), submitted.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24, (2007), in print.
[CrossRef]

2006

2005

2004

2003

S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. "Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature," Quantum Electron. 33, 1096-1100 (2003).
[CrossRef]

M. R. Mokhtar,  et al. "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, "Generation of 10.5 W, 1178nm Laser based on Phosphosilicate Raman Fiber Laser," Jpn. J. Appl. Phys. 42, L1439-L1441 (2003).
[CrossRef]

2001

P. C. Reeves-Hall and J. R. Taylor, "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm," Electron. Lett. 37, 491-492 (2001).
[CrossRef]

2000

E. M. Dianov, I. A. Bufetov,  et al. "Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber," Opt. Lett. 25, 402-404 (2000).
[CrossRef]

S. A. E. Lewis, V. Chernikov, and J. R. Taylor, "Fibre-optic tunable CW Raman laser operating around 1.3 μm," Opt. Commun. 182, 403-405 (2000).
[CrossRef]

A. S. Kurkov, E. M. Dianov,  et al. "High-power fibre Raman lasers emitting in the 1.22 —1.34-μm range," Quantum Electron. 30, 791-793 (2000).
[CrossRef]

1997

E. M. Dianov, M. V. Grekov,  et al. "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Electron. Lett.

P. C. Reeves-Hall and J. R. Taylor, "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm," Electron. Lett. 37, 491-492 (2001).
[CrossRef]

E. M. Dianov, M. V. Grekov,  et al. "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

M. R. Mokhtar,  et al. "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

J. Opt. Soc. Am. B

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24, (2007), in print.
[CrossRef]

Jpn. J. Appl. Phys.

S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, "Generation of 10.5 W, 1178nm Laser based on Phosphosilicate Raman Fiber Laser," Jpn. J. Appl. Phys. 42, L1439-L1441 (2003).
[CrossRef]

Opt. Commun.

S. A. E. Lewis, V. Chernikov, and J. R. Taylor, "Fibre-optic tunable CW Raman laser operating around 1.3 μm," Opt. Commun. 182, 403-405 (2000).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Quantum Electron.

S. R. Abdullina,  et al. "Tunable Ytterbium-doped fiber laser," Quantum Electron. (2007), submitted.

A. S. Kurkov, E. M. Dianov,  et al. "High-power fibre Raman lasers emitting in the 1.22 —1.34-μm range," Quantum Electron. 30, 791-793 (2000).
[CrossRef]

S. A. Babin, A. S. Kurkov, V. V. Potapov, and D. V. Churkin. "Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature," Quantum Electron. 33, 1096-1100 (2003).
[CrossRef]

Other

D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, "1480-1485 nm cascaded CW Raman fiber laser," Proc. of CLEO 2000, p. 302, paper CWK20.

S. Cierullies,  et al., "Widely tunable CW Raman fiber laser supported by switchable FBG resonators," European Conference on Optical Communication, Rimini, Italy, Paper Tu3.2.3, pp. 224-225, 2003

S. Cierullies, E. Lim, and E. Brinkmeyer, "All-fiber widely tunable Raman laser in a combined linear and Sagnac-loop configuration," in Proc. of OFC 2005, paper OME11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TFBG scheme.

Fig. 2
Fig. 2

TRFL setup

Fig. 3.
Fig. 3.

RFL performances at fixed pump (~1109 nm) at Stokes wavelengths (~1300 nm). (a) RFL output power: red dots – residual pump poweer, black dots – Stokes wave output power. (b) RFL output spectrum at different pump power: 2.7, 3.6, 4.6, 5.7, and 6.6 W (from black to green line correspondingly).

Fig. 4.
Fig. 4.

(a) TRFL generation wavelength vs YDFL pump wavelength (b) TRFL output power vs wavelength at 3.6 W pump power.

Fig. 5.
Fig. 5.

(a) TRFL output power at cavity FBGs detuning. (b) TRFL output power at fixed pump wavelength.

Fig. 6.
Fig. 6.

RFL output spectrum at different FBGs detuning: -0.43 nm (black curve), -0.27 nm (red curve), -0.02 nm (blue curve), 0.28 nm (purple curve), 0.75 nm (green curve). Pump power is 3.6 W.

Metrics