Abstract

We report experimental realization of a 5-layer three-dimensional (3D) metallic photonic crystal structure that exhibits characteristics of a 3D complete bandgap extending from near-infrared down to visible wavelength at around 650 nm. The structure also exhibits a new kind of non-localized passband mode in the infrared far beyond its metallic waveguide cutoff. This new passband mode is drastically different from the well-known defect mode due to point or line defects. Three-dimensional finite-difference-time-domain simulations were carried out and the results suggest that the passband modes are due to intra-structure resonances.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  3. D. M. Whittaker, "Inhibited emission in photonic crystal lattices," Opt. Lett. 25, 779-781 (2000).
    [CrossRef]
  4. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-2246 (2000).
    [CrossRef]
  5. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
    [CrossRef] [PubMed]
  6. J. G. Fleming, and S. Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm," Opt. Lett. 24, 49-51 (1999).
    [CrossRef]
  7. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Nature 289, 604-606 (2000).
  8. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
    [CrossRef] [PubMed]
  9. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
    [CrossRef]
  10. J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998).
    [CrossRef]
  11. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
    [CrossRef]
  12. S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, "Achieving a photonic band edge near visible wavelengths by metallic coatings," J. Appl. Phys. 99, 083104 (2006).
    [CrossRef]
  13. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, "Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal," J. Opt. Soc. Am. B 20, 1538-1541 (2003).
    [CrossRef]
  14. S. Y. Lin, J. G. Fleming, and I. El-Kady, "Highly efficient light emission at λ = 1.5 μm by a three-dimensional tungsten photonic crystal," Opt. Lett. 28, 1683-1685 (2003).
    [CrossRef] [PubMed]
  15. D. L. C. Chan, M. Soljacic, and J. D. Joannopoulos, "Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs," Phys. Rev. E 74, 036615 (2006).
    [CrossRef]
  16. M. J. Loboda, C. M. Grove, and R. F. Schneider, "Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins," J. Electrochem. Soc. 145, 2861-2866 (1998).
    [CrossRef]
  17. C. R. Simovski and P. A. Belov, "Low-frequency spatial dispersion in wire media," Phys. Rev. E 70, 046616 (2004).
    [CrossRef]
  18. G. Subramania, and S. Y. Lin, "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 85, 5037-5039 (2004).
    [CrossRef]
  19. Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
    [CrossRef]
  20. E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, San Diego, 1998), pp. 294-295.
  21. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
    [CrossRef] [PubMed]
  22. H. Y. Sang, Z. Y. Li, and B. Y. Gu, "Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals," Phys. Rev. E 70, 066611 (2004).
    [CrossRef]
  23. H. Y. Sang, Z. Y. Li, and B. Y. Gu, "Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters," J. Appl. Phys. 97, 033102 (2005).
    [CrossRef]
  24. Z. Y. Li and K. M. Ho, "Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals," Phys. Rev. B 67, 165104 (2003).
    [CrossRef]
  25. Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, "Photonic band gap effect in layer-by-layer metallic photonic crystals," J. Appl. Phys. 93, 38-42 (2003).
    [CrossRef]
  26. M. Laroche, R. Carminati, and J. J. Greffet, "Resonant optical transmission through a photonic crystal in the forbidden gap," Phys. Rev. B 71, 155113 (2005).
    [CrossRef]
  27. L. L. Chang, L. Esaki, and R. Tsu, "Resonant tunneling in semiconductor double barriers," Appl. Phys. Lett. 24, 593-595 (1974).
    [CrossRef]
  28. S. Y. Lin and G. Arjavalingam, "Photonic bound states in two-dimensional photonic crystals probed by coherent-microwave transient spectroscopy," J. Opt. Soc. Am. B 11, 2124-2127 (1994).
    [CrossRef]
  29. S. Y. Lin, V. M. Hietala, and S. K. Lyo, "Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity," Appl. Phys. Lett. 68, 3233-3235 (1996).
    [CrossRef]
  30. E. Ozbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukuolis, and K. M. Ho, "Defect structures in metallic photonic crystals," Appl. Phys. Lett. 69, 3797-3799 (1996).
    [CrossRef]

2006 (2)

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, "Achieving a photonic band edge near visible wavelengths by metallic coatings," J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

D. L. C. Chan, M. Soljacic, and J. D. Joannopoulos, "Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs," Phys. Rev. E 74, 036615 (2006).
[CrossRef]

2005 (3)

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

H. Y. Sang, Z. Y. Li, and B. Y. Gu, "Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters," J. Appl. Phys. 97, 033102 (2005).
[CrossRef]

M. Laroche, R. Carminati, and J. J. Greffet, "Resonant optical transmission through a photonic crystal in the forbidden gap," Phys. Rev. B 71, 155113 (2005).
[CrossRef]

2004 (5)

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

H. Y. Sang, Z. Y. Li, and B. Y. Gu, "Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals," Phys. Rev. E 70, 066611 (2004).
[CrossRef]

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

C. R. Simovski and P. A. Belov, "Low-frequency spatial dispersion in wire media," Phys. Rev. E 70, 046616 (2004).
[CrossRef]

G. Subramania, and S. Y. Lin, "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 85, 5037-5039 (2004).
[CrossRef]

2003 (5)

Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Z. Y. Li and K. M. Ho, "Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals," Phys. Rev. B 67, 165104 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, "Photonic band gap effect in layer-by-layer metallic photonic crystals," J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, "Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal," J. Opt. Soc. Am. B 20, 1538-1541 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Highly efficient light emission at λ = 1.5 μm by a three-dimensional tungsten photonic crystal," Opt. Lett. 28, 1683-1685 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

2000 (3)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-2246 (2000).
[CrossRef]

D. M. Whittaker, "Inhibited emission in photonic crystal lattices," Opt. Lett. 25, 779-781 (2000).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Nature 289, 604-606 (2000).

1999 (1)

1998 (2)

J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998).
[CrossRef]

M. J. Loboda, C. M. Grove, and R. F. Schneider, "Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins," J. Electrochem. Soc. 145, 2861-2866 (1998).
[CrossRef]

1996 (2)

S. Y. Lin, V. M. Hietala, and S. K. Lyo, "Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity," Appl. Phys. Lett. 68, 3233-3235 (1996).
[CrossRef]

E. Ozbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukuolis, and K. M. Ho, "Defect structures in metallic photonic crystals," Appl. Phys. Lett. 69, 3797-3799 (1996).
[CrossRef]

1994 (1)

1987 (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

1974 (1)

L. L. Chang, L. Esaki, and R. Tsu, "Resonant tunneling in semiconductor double barriers," Appl. Phys. Lett. 24, 593-595 (1974).
[CrossRef]

Appl. Phys. Lett. (5)

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

G. Subramania, and S. Y. Lin, "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 85, 5037-5039 (2004).
[CrossRef]

L. L. Chang, L. Esaki, and R. Tsu, "Resonant tunneling in semiconductor double barriers," Appl. Phys. Lett. 24, 593-595 (1974).
[CrossRef]

S. Y. Lin, V. M. Hietala, and S. K. Lyo, "Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity," Appl. Phys. Lett. 68, 3233-3235 (1996).
[CrossRef]

E. Ozbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukuolis, and K. M. Ho, "Defect structures in metallic photonic crystals," Appl. Phys. Lett. 69, 3797-3799 (1996).
[CrossRef]

J. Appl. Phys. (3)

H. Y. Sang, Z. Y. Li, and B. Y. Gu, "Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters," J. Appl. Phys. 97, 033102 (2005).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, "Photonic band gap effect in layer-by-layer metallic photonic crystals," J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, "Achieving a photonic band edge near visible wavelengths by metallic coatings," J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

J. Electrochem. Soc. (1)

M. J. Loboda, C. M. Grove, and R. F. Schneider, "Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins," J. Electrochem. Soc. 145, 2861-2866 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Nature (3)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Nature 289, 604-606 (2000).

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

Phys. Rev. B (3)

M. Laroche, R. Carminati, and J. J. Greffet, "Resonant optical transmission through a photonic crystal in the forbidden gap," Phys. Rev. B 71, 155113 (2005).
[CrossRef]

Z. Y. Li and K. M. Ho, "Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals," Phys. Rev. B 67, 165104 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-2246 (2000).
[CrossRef]

Phys. Rev. E (4)

D. L. C. Chan, M. Soljacic, and J. D. Joannopoulos, "Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs," Phys. Rev. E 74, 036615 (2006).
[CrossRef]

C. R. Simovski and P. A. Belov, "Low-frequency spatial dispersion in wire media," Phys. Rev. E 70, 046616 (2004).
[CrossRef]

H. Y. Sang, Z. Y. Li, and B. Y. Gu, "Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals," Phys. Rev. E 70, 066611 (2004).
[CrossRef]

Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Science (1)

J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998).
[CrossRef]

Other (1)

E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, San Diego, 1998), pp. 294-295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of a 5-layer 3D metallo-dielectric photonic crystal that exhibits complete photonic bandgap down to visible wavelength of 650 nm and is shown to support non-localized propagating modes in the infrared far beyond the metallic waveguide cutoff.

Fig. 2.
Fig. 2.

Cross-sectional SEM images of a 5-layer Au-HSQ woodpile-like 3D photonic crystal with 300 nm pitch fabricated layer-by-layer using electron beam lithography. a.) View of plane normal to x-axis when referred to Fig. 1. b.) View of plane normal to y-axis. The average Au rod width is 105 nm and the rod thickness is 85 nm. Each Au rod layer is separated from its adjacent layers by HSQ spacer thickness of 85 nm. The total sample area is 5 mm × 5 mm.

Fig. 3.
Fig. 3.

(a). Measured reflectance and transmittance of the sample depicted in Fig. 2 at an incident angle of 20° (relative to the z-axis as shown in Fig. 1) by FTIR. The incident light is unpolarized. The reflectance of the sample is normalized to a gold mirror and the transmittance to a bare double-sided Si wafer. (b). Calculated reflectance and transmittance of the same sample using TMM, with geometrical parameters obtained from Fig. 2.

Fig. 4.
Fig. 4.

FTIR-measured tilt-angle reflectance of the sample depicted in Fig. 2 at incident angles from 20° to 60° at 10° increments. The data for 20° is re-plotted here from Fig. 3 for completeness. The tilt-angle geometry is as shown in the inset.

Fig. 5.
Fig. 5.

Calculated photonic band structures along the (001) direction for metallodielectric 3D photonic crystal (a) without spacer between rod layers (s = 0) and (b) with HSQ spacers between adjacent rod layers (s = 85 nm). c0 is the thickness of a unit cell. Perfectly conducting metal is assumed in the calculations using TMM.

Fig. 6.
Fig. 6.

3D Finite-Difference-Time-Domain (FDTD) calculations of electric field strength inside a 5-layer Au-HSQ 3D photonic crystal structure shown in Fig. 1 using geometrical parameters obtained from Fig. 2(b) at incident wavelength of a.) 0.95 μm and b.) 1.2 μm corresponding to a reflectance dip in TMM calculation shown in Fig. 3(b). Plane lightwave is normally incident from top and is linearly polarized along the y-axis. The figures show field strength on a plane normal to the y-axis and situated at the middle of the offset between 2nd and 4th layer Au rods. The rectangles indicate the positions of the Au rods in the 1st, 3rd and 5th layer and act as guide to the eye. The color scale denotes the normalized magnitude of electric field.

Metrics