Abstract

We conceptually compare the advantages of the proposed slow-light-based tunable OTDM to conventional fiber-based fixed OTDM multiplexer. We experimentally demonstrate continuously-controllable OTDM of two 2.5-Gb/s return-to-zero (RZ) signals using broadband SBS-based slow-light as the tunable optical delay line. We show that the time slot of one signal path can be manipulated relative to the other by as much as 75-ps. This continuous slow light tunability dramatically enhances the OTDM system performance which results in a power penalty reduction of 9-dB for the multiplexed data stream. We also demonstrate variable-bit-rate OTDM by dynamically adjusting the tunable slow-light delay according to the input bit-rates. We show efficient two-by-one optical time multiplexing of three different input data streams at 2.5-Gb/s, 2.67-Gb/s and 5-Gb/s.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, "100 Gb/s Optical Time-Division Multiplexed Networks," J. Lightwave Technol. 20,2086-2100 (2002).
    [CrossRef]
  2. M. González Herráez, K. Y. Song, and L. Thévenaz, " Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett.  87, 081113 (2005)
    [CrossRef]
  3. Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z. M.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett.  94, 153902 (2005).
    [CrossRef] [PubMed]
  4. J. Sharping, Y. Okawachi, and A. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  5. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
    [CrossRef] [PubMed]
  6. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005).
    [CrossRef] [PubMed]
  7. F. G. Sedgwick, B. Pesala, J. -Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, "THz-bandwidth tunable slow light in semiconductor optical amplifiers," Opt. Express 15, 747-753 (2007).
    [CrossRef] [PubMed]
  8. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
    [CrossRef] [PubMed]
  9. L. Yi, W. Hu, Y. Su, M. Gao, L. Leng, "Design and system demonstration of a tunable slow-light delay line based on fiber parametric process," Photon. Technol. Lett. 18, 2575-2577, (2006)
    [CrossRef]
  10. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS Slow Light in an Optical Fiber," J. Lightwave Technol. 25, 201-206 (2007).
    [CrossRef]
  11. K. Y. Song and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. 32, 217-219 (2007).
    [CrossRef] [PubMed]
  12. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differential-phase-shift-keying signals," Opt. Express 15, 1878-1883 (2007).
    [CrossRef] [PubMed]
  13. B. Zhang, L.-S. Yan. J.-Y. Yang, I. Fazal and A. E. Willner, "A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels," Photon. Technol. Lett. 19 (2007)

2007 (5)

2006 (2)

L. Yi, W. Hu, Y. Su, M. Gao, L. Leng, "Design and system demonstration of a tunable slow-light delay line based on fiber parametric process," Photon. Technol. Lett. 18, 2575-2577, (2006)
[CrossRef]

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

2005 (5)

J. Sharping, Y. Okawachi, and A. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
[CrossRef] [PubMed]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005).
[CrossRef] [PubMed]

M. González Herráez, K. Y. Song, and L. Thévenaz, " Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett.  87, 081113 (2005)
[CrossRef]

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z. M.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

2002 (1)

Appl. Phys. Lett. (1)

M. González Herráez, K. Y. Song, and L. Thévenaz, " Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett.  87, 081113 (2005)
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (6)

Opt. Lett. (1)

Photon. Technol. Lett. (2)

L. Yi, W. Hu, Y. Su, M. Gao, L. Leng, "Design and system demonstration of a tunable slow-light delay line based on fiber parametric process," Photon. Technol. Lett. 18, 2575-2577, (2006)
[CrossRef]

B. Zhang, L.-S. Yan. J.-Y. Yang, I. Fazal and A. E. Willner, "A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels," Photon. Technol. Lett. 19 (2007)

Phys. Rev. Lett. (1)

Y.  Okawachi, M. S.  Bigelow, J. E.  Sharping, Z. M.  Zhu, A.  Schweinsberg, D. J.  Gauthier, R. W.  Boyd, and A. L.  Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Due to the fixed set of optical path delays, it is highly likely that conventional OTDM will have misaligned outputs for some certain incoming offsets between bit streams. However, slow-light-based tunable OTDM can always reconfigure its continuous delay according to the incoming offsets and get the output streams well-multiplexed.

Fig. 2.
Fig. 2.

Concept of slow-light-based OTDM for dynamic reconfiguration of different input data-bit-rates. Incoming bit-rates to be multiplexed can in theory be of any value because of the continuously-controllable delays slow light offer.

Fig. 3.
Fig. 3.

Experimental setup of SBS slow-light based tunable OTDM for time multiplexing of two 2.5-Gb/s 33% RZ signals.

Fig. 4.
Fig. 4.

Bit patterns and spectra comparison when SBS pump is off and turned on to 600mW. This shows efficient OTDM multiplexing after continuously-tunable slow-light of up to 75-ps delay.

Fig. 5.
Fig. 5.

Power penalty versus fractional delay and the corresponding eye diagrams. Up to 9-dB power penalty reduction is achieved by using slow-light-based OTDM, which shows its capability for dynamically enhancing the system performance.

Fig. 6.
Fig. 6.

Variable bit-rate OTDM: Efficient multiplexing of two data streams at three different input bit-rate.

Fig. 7.
Fig. 7.

Power penalty and fractional delay at three different input bit-rates.

Metrics