Abstract

We implement a photon-counting Optical Time Domain Reflectometer (OTDR) at 1.55μm which exhibits a high 2-point resolution and a high accuracy. It is based on a low temporal-jitter photon-counting module at 1.55μm. This detector is composed of a periodically poled Lithium niobate (PPLN) waveguide, which provides a wavelength conversion from near infrared to visible light, and a low jitter silicon photon-counting detector. With this apparatus, we obtain centimetre resolution over a measurement range of tens of kilometres.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wegmuller, F. Scholder, and N. Gisin, “Photon-Counting OTDR for Local Birefringence and Fault Analysis in the Metro Environment,” J. Lightwave Technol. 22, 390 (2004).
    [CrossRef]
  2. C. G. Bethea, B. F. Levine, S. Cova, and G. Ripamonti, “High-resolution and high-sensitivity optical-time-domain reflectometer,” Opt. Lett. 13, 233 (1988).
    [CrossRef] [PubMed]
  3. A. P. Van Devender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).
  4. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer , “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518 (2004).
    [CrossRef] [PubMed]
  5. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449 (2004).
    [CrossRef] [PubMed]
  6. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
    [CrossRef]
  7. E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, and H. Takesue, “1.5μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide,” Opt. Lett. 31, 727 (2006).
    [CrossRef] [PubMed]
  8. D. Derickson, “Fiber Optic Test and Measurement” (Pretentie-Hall, 1998), Chap.10 and 11.
  9. M. Wegmüller, M. Legré, and N. Gisin, “Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry,” J. Lightwave Technol. 20, 828 (2002).
    [CrossRef]
  10. G.P. Arawal, “Fiber-Optic Communication Systems” (John Wiley & Sons, 1997).

2006 (2)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, and H. Takesue, “1.5μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide,” Opt. Lett. 31, 727 (2006).
[CrossRef] [PubMed]

2004 (4)

2002 (1)

M. Wegmüller, M. Legré, and N. Gisin, “Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry,” J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

1988 (1)

Albota, M. A.

Arawal, G.P.

G.P. Arawal, “Fiber-Optic Communication Systems” (John Wiley & Sons, 1997).

Bethea, C. G.

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

C. G. Bethea, B. F. Levine, S. Cova, and G. Ripamonti, “High-resolution and high-sensitivity optical-time-domain reflectometer,” Opt. Lett. 13, 233 (1988).
[CrossRef] [PubMed]

Derickson, D.

D. Derickson, “Fiber Optic Test and Measurement” (Pretentie-Hall, 1998), Chap.10 and 11.

Diamanti, E.

Fejer, M. M.

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

M. Wegmuller, F. Scholder, and N. Gisin, “Photon-Counting OTDR for Local Birefringence and Fault Analysis in the Metro Environment,” J. Lightwave Technol. 22, 390 (2004).
[CrossRef]

M. Wegmüller, M. Legré, and N. Gisin, “Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry,” J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Kurz, J. R.

Kwiat, P. G.

A. P. Van Devender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).

Langrock, C.

Legré, M.

M. Wegmüller, M. Legré, and N. Gisin, “Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry,” J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

Levine, B. F.

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Ripamonti, G.

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Roussev, R. V.

Scholder, F.

Takesue, H.

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Van Devender, A. P.

A. P. Van Devender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).

Wegmuller, M.

Wegmüller, M.

M. Wegmüller, M. Legré, and N. Gisin, “Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry,” J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

Wong, F. N. C.

Yamamoto, Y.

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

J. Lightwave Technol. (2)

M. Wegmuller, F. Scholder, and N. Gisin, “Photon-Counting OTDR for Local Birefringence and Fault Analysis in the Metro Environment,” J. Lightwave Technol. 22, 390 (2004).
[CrossRef]

M. Wegmüller, M. Legré, and N. Gisin, “Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry,” J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

J. Mod. Opt. (1)

A. P. Van Devender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433 (2004).

New J. Phys. (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[CrossRef]

Opt. Lett. (4)

Other (2)

D. Derickson, “Fiber Optic Test and Measurement” (Pretentie-Hall, 1998), Chap.10 and 11.

G.P. Arawal, “Fiber-Optic Communication Systems” (John Wiley & Sons, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Set-up of the photon-counting module based on sum frequency generation.

Fig. 2.
Fig. 2.

Set-up of the v_OTDR. The system is used in either configuration 1 or 2. The system under test (SUT) is composed of two different artefacts either with, or without, a fibre.

Fig. 3.
Fig. 3.

Measurements of a 16km-length fibre performed by our apparatus. The trace OTDR is obtained when the scrambler is active, the P-OTDR trace when the scrambler is off.

Fig. 4.
Fig. 4.

a_ Measurement of the artefact 1 in configuration 1, the obtained resolution is ~1cm. b_ Measurements of artefact 2 in configuration 2. OFDR: black line; v-OTDR/0m fibre: red line; v-OTDR/20km DSF: green line; v-OTDR/50km fibre: blue line.

Metrics