Abstract

Optical micropillar Bragg cavities of different diameters and coupled by a small bridge have been realized experimentally by means of a focused ion beam system. The resonator modes in these coupled microcavities are either localized in one pillar or delocalized over the whole photonic structure, a fact that could be exploited to control the coupling between two spatially separated quantum dots, i.e. placed in different pillars, via the enhanced electromagnetic field in such a coupled microcavity. A simplified two dimensional simulation has been used to predict the resonant wavelengths and design the optical modes in these coupled Bragg cavities.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204-4207 (1999).
    [CrossRef]
  2. G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, "Control of vertically coupled InGaAs/GaAs quantum dots with electric fields," Phys. Rev. Lett. 94, 157401 (2005).
    [CrossRef] [PubMed]
  3. J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, "Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators," Appl. Phys. Lett. 55, 22 (1989).
    [CrossRef]
  4. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett. 69, 449 (1996).
    [CrossRef]
  5. A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot micropillar cavities for quantum electrodynamic experiments," Appl. Phys. Lett. 86, 111105 (2005).
  6. D. Sanvitto, A. Daraei, A. Tahraoui,M. Hopkinson, P.W. Fry, D.M. Whittaker, and M. S. Skolnick, "Observation of ultrahigh quality factor in a semiconductor microcavity," Appl. Phys. Lett. 86, 191109 (2005).
    [CrossRef]
  7. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
    [CrossRef]
  8. M. Karl, W. Löffler, J. Lupaca-Schomber, T. Passow, S. Li, J. Hawecker, F. Pérez-Willard, D. Gerthsen, H. Kalt, C. Klingshirn, and M. Hetterich, "Single and coupled microcavities—AlAs/GaAs DBR pillars and GaAs pyramids," AIP Conf. Proc. 893, 1133 (2007).
    [CrossRef]
  9. G. Guttroff, M. Bayer, J. P. Reithmaier, A. Forchel, P. A. Knipp, and T. L. Reinecke, "Photonic defect states in chains of coupled microresonators," Phys. Rev. B 64, 155313 (2001).
    [CrossRef]
  10. M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, "Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities," J. Appl. Phys. 97, 023101 (2005).
    [CrossRef]

2007

M. Karl, W. Löffler, J. Lupaca-Schomber, T. Passow, S. Li, J. Hawecker, F. Pérez-Willard, D. Gerthsen, H. Kalt, C. Klingshirn, and M. Hetterich, "Single and coupled microcavities—AlAs/GaAs DBR pillars and GaAs pyramids," AIP Conf. Proc. 893, 1133 (2007).
[CrossRef]

2005

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot micropillar cavities for quantum electrodynamic experiments," Appl. Phys. Lett. 86, 111105 (2005).

D. Sanvitto, A. Daraei, A. Tahraoui,M. Hopkinson, P.W. Fry, D.M. Whittaker, and M. S. Skolnick, "Observation of ultrahigh quality factor in a semiconductor microcavity," Appl. Phys. Lett. 86, 191109 (2005).
[CrossRef]

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, "Control of vertically coupled InGaAs/GaAs quantum dots with electric fields," Phys. Rev. Lett. 94, 157401 (2005).
[CrossRef] [PubMed]

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, "Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities," J. Appl. Phys. 97, 023101 (2005).
[CrossRef]

2001

G. Guttroff, M. Bayer, J. P. Reithmaier, A. Forchel, P. A. Knipp, and T. L. Reinecke, "Photonic defect states in chains of coupled microresonators," Phys. Rev. B 64, 155313 (2001).
[CrossRef]

1999

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

1998

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

1996

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

1989

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, "Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators," Appl. Phys. Lett. 55, 22 (1989).
[CrossRef]

AIP Conf. Proc.

M. Karl, W. Löffler, J. Lupaca-Schomber, T. Passow, S. Li, J. Hawecker, F. Pérez-Willard, D. Gerthsen, H. Kalt, C. Klingshirn, and M. Hetterich, "Single and coupled microcavities—AlAs/GaAs DBR pillars and GaAs pyramids," AIP Conf. Proc. 893, 1133 (2007).
[CrossRef]

Appl. Phys. Lett.

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, "Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators," Appl. Phys. Lett. 55, 22 (1989).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot micropillar cavities for quantum electrodynamic experiments," Appl. Phys. Lett. 86, 111105 (2005).

D. Sanvitto, A. Daraei, A. Tahraoui,M. Hopkinson, P.W. Fry, D.M. Whittaker, and M. S. Skolnick, "Observation of ultrahigh quality factor in a semiconductor microcavity," Appl. Phys. Lett. 86, 191109 (2005).
[CrossRef]

J. Appl. Phys.

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, "Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities," J. Appl. Phys. 97, 023101 (2005).
[CrossRef]

Phys. Rev. B

G. Guttroff, M. Bayer, J. P. Reithmaier, A. Forchel, P. A. Knipp, and T. L. Reinecke, "Photonic defect states in chains of coupled microresonators," Phys. Rev. B 64, 155313 (2001).
[CrossRef]

Phys. Rev. Lett.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83, 4204-4207 (1999).
[CrossRef]

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, "Control of vertically coupled InGaAs/GaAs quantum dots with electric fields," Phys. Rev. Lett. 94, 157401 (2005).
[CrossRef] [PubMed]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images showing a single pillar with a diameter of 2.7μm (a) and a coupled pillar structure with pillar diameters of 6.3μm and 4μm (coupling type I-II), a center distance of 5.7μm, and a bridge width of 3μm (b).

Fig. 2.
Fig. 2.

Simulated (solid line) and experimentally found (crosses) resonance wavelengths in single pillars in dependence of their diameters. The dashed lines mark different coupling types (I-II and II-III). The inset shows a typical μ-PL spectrum.

Fig. 3.
Fig. 3.

Color-coded intensity distribution of the lowest optical modes in a coupled pillar structure with diameters of 5.0 μm and 3.7μm (coupling type II-III), a center distance of 5.7μm, and a bridge width of 2.9μm, according to the simulation.

Fig. 4.
Fig. 4.

Spatially resolved color-coded μ-PL spectra for a coupled pillar structure with diameters of 5.0μm and 3.7 μm (coupling type II-III), a center distance of 5.7μm, and a bridge width of 2.9μm. The contour on the left indicates the detection position by a vertical dashed line as well as the position in the spatial resolution. The spectra below the images display the spatially integrated μ-PL intensity and the modeled resonance wavelengths (vertical lines). The Roman numbers refer to the same modes as in Fig. 3. The two spectra differ in the excitation position which is placed on the wider pillar (a) or the smaller pillar (b).

Metrics