Abstract

Recent experiments have shown that the simple addition of a length of Raman-shifting fibre in the cavity of a cw-pumped fibre laser can cause the laser to generate a stable train of pulses [Zhao and Jackson, Opt. Lett., 31 751 (2006)]. We show using a numerical model that this behavior is a new type of mode locking, driven by backward stimulated Raman scattering. This mode locking mechanism could also be applied to crystalline Raman laser systems to create a novel picosecond oscillator.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. A. Haus, "Mode locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
    [CrossRef]
  2. K. Stankov, "Mode locking by a frequency-doubling crystal: generation of transform-limited ultrashort light pulses," Opt. Lett. 14, 359-361 (1989).
    [CrossRef] [PubMed]
  3. I. N. DulingIII, "All-fiber ring soliton laser mode locked with a nonlinear mirror," Opt. Lett. 16, 539-541 (1991).
    [CrossRef]
  4. H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Electron. 36, 949-955 (2000).
    [CrossRef]
  5. J. Simons, H. Pask, P. Dekker, and J. Piper, "Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Opt. Commun. 229, 305-310 (2004).
    [CrossRef]
  6. V. A. Lisinetskii, A. S. Grabtchikov, P. A. Apanasevich, M. Schmitt, B. Kuschner, S. Schlucker, and V. A. Orlovich, "Continuous-wave solid-state Raman laser for spectroscopic applications," J. Raman Spectrosc. 37, 421-428 (2006).
    [CrossRef]
  7. Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, "Intracavity Raman Lasers," IEEE J. Quantum Electron. 25, 208-212 (1989).
    [CrossRef]
  8. C. C. Davis, Lasers and Electro-optics: fundamentals and engineering (Cambridge, Cambridge University Press 1996).
  9. Y. C. Zhao and S. D. Jackson, "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 751-753 (2006).
    [CrossRef] [PubMed]
  10. R. Paschotta, "Comment on "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 2737-2738 (2006).
    [CrossRef] [PubMed]
  11. Y. C. Zhao and S. D. Jackson, "Reply to comment on "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 2739-2740 (2006).
    [CrossRef]
  12. Y. C. Zhao and S. D. Jackson, Optical Fibre Technology Park, University of Sydney, Australia (Personal communication, 2007).
  13. A. Penzkofer, A. Laubereau, and W. Kaiser, "High intensity Raman interactions," Prog. Quantum Electron. 6, 55-140 (1979).
    [CrossRef]
  14. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, "Continuous-wave Raman generation in a diode-pumped Nd3+: KGd(WO4)(2) laser," Opt. Lett. 30, 1701-1703 (2005).
    [CrossRef] [PubMed]
  15. H. M. Pask, "Continuous-wave, all-solid-state, intracavity Raman laser," Opt. Lett. 30, 2454-2456 (2005).
    [CrossRef] [PubMed]

2006

Y. C. Zhao and S. D. Jackson, "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 751-753 (2006).
[CrossRef] [PubMed]

R. Paschotta, "Comment on "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 2737-2738 (2006).
[CrossRef] [PubMed]

Y. C. Zhao and S. D. Jackson, "Reply to comment on "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 2739-2740 (2006).
[CrossRef]

V. A. Lisinetskii, A. S. Grabtchikov, P. A. Apanasevich, M. Schmitt, B. Kuschner, S. Schlucker, and V. A. Orlovich, "Continuous-wave solid-state Raman laser for spectroscopic applications," J. Raman Spectrosc. 37, 421-428 (2006).
[CrossRef]

2005

2004

J. Simons, H. Pask, P. Dekker, and J. Piper, "Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Opt. Commun. 229, 305-310 (2004).
[CrossRef]

2000

H. A. Haus, "Mode locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Electron. 36, 949-955 (2000).
[CrossRef]

1991

1989

K. Stankov, "Mode locking by a frequency-doubling crystal: generation of transform-limited ultrashort light pulses," Opt. Lett. 14, 359-361 (1989).
[CrossRef] [PubMed]

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, "Intracavity Raman Lasers," IEEE J. Quantum Electron. 25, 208-212 (1989).
[CrossRef]

1979

A. Penzkofer, A. Laubereau, and W. Kaiser, "High intensity Raman interactions," Prog. Quantum Electron. 6, 55-140 (1979).
[CrossRef]

IEEE J. Quantum Electron.

H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Electron. 36, 949-955 (2000).
[CrossRef]

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, "Intracavity Raman Lasers," IEEE J. Quantum Electron. 25, 208-212 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, "Mode locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

J. Raman Spectrosc.

V. A. Lisinetskii, A. S. Grabtchikov, P. A. Apanasevich, M. Schmitt, B. Kuschner, S. Schlucker, and V. A. Orlovich, "Continuous-wave solid-state Raman laser for spectroscopic applications," J. Raman Spectrosc. 37, 421-428 (2006).
[CrossRef]

Opt. Commun.

J. Simons, H. Pask, P. Dekker, and J. Piper, "Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Opt. Commun. 229, 305-310 (2004).
[CrossRef]

Opt. Lett.

Opt.Lett.

Y. C. Zhao and S. D. Jackson, "Reply to comment on "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 2739-2740 (2006).
[CrossRef]

Prog. Quantum Electron.

A. Penzkofer, A. Laubereau, and W. Kaiser, "High intensity Raman interactions," Prog. Quantum Electron. 6, 55-140 (1979).
[CrossRef]

Other

C. C. Davis, Lasers and Electro-optics: fundamentals and engineering (Cambridge, Cambridge University Press 1996).

Y. C. Zhao and S. D. Jackson, Optical Fibre Technology Park, University of Sydney, Australia (Personal communication, 2007).

Supplementary Material (2)

» Media 1: MOV (3481 KB)     
» Media 2: MOV (2564 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Predicted output pulses at the fundamental, first-Stokes and second-Stokes wavelengths for incident pump powers of 5.5 W (a) and 9 W (b).

Fig. 2.
Fig. 2.

Movies showing the development of the fundamental and Stokes intracavity fields during three round trips, for a pump power of 5.5 W. Movie (a) shows an animation of the total cavity field at each wavelength vs. position (3.4 MB) [Media 1]. Movie (b) shows the cavity fields (unwrapped so the left-traveling cavity field is plotted on the right of the right-traveling field) viewed in a moving frame that travels around the cavity at the group velocity (2.5 MB). [Media 2]

Tables (1)

Tables Icon

Table 1. Input parameters for the model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N t = P in A L ħ ω p N τ σ f N A L ħ [ ( P f + + P f ) ω f + f s ( P s + + P s ) ω s + f ss ( P ss + + P ss ) ω ss ]
1 v f P f ± t ± P f ± z = σ L NP f ± σ R A R ( P s + + P s ) P f ± ω f ω s α P f ± + γN β ( P f + P f )
1 v s P s ± t ± P s ± z = f s σ L NP s ± + σ R A R ( P f + + P f ) P s ± σ R A R ( P ss + + P ss ) P s ± ω s ω ss α P s ± + f s γN β ( P s + P s )
1 v ss P ss ± t ± P ss ± z = f ss σ L NP s ± + σ R A R ( P s + + P s ) P ss ± α P ss ± + f ss γN β ( P ss + P ss )
P + ( 0 , t ) = P ( 0 , t ) P ( L , t ) = RP + ( L , t )

Metrics