Abstract

In this paper we design and measure a metamaterial polarizing device working in the sub-terahertz range. The polarizer is based on a modified version of our previous miniaturized Stacked Hole Array (SHA) structure, an arrangement that combines Extraordinary Optical Transmission (EOT) and Left-Handed Metamaterial (LHM) propagation even under Fresnel illumination. Here, we use a self complementary screen by connecting the holes of an EOT structure. Importantly, EOT remains and simultaneously total reflection is obtained for the orthogonal component. Moreover, by computing the dispersion diagram, we demonstrate that LHM propagation can be achieved for the principal polarization within the stop band of the orthogonal component, which propagates in other bands as a standard forward wave. Finally, we check our conjectures by measuring the transmission and reflection coefficients of screens milled on a low-loss microwave substrate. Measurements have been taken for 1 to 6 stacked wafers and they show clearly that the stack acts as a polarizer with left-handed characteristic. Our results open the way to design of novel polarization control metamaterials at Terahertz wavelengths..

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Stacked subwavelength gratings as circular polarization filters

Panfilo C. Deguzman and Gregory P. Nordin
Appl. Opt. 40(31) 5731-5737 (2001)

Second-harmonic generation in nonlinear left-handed metamaterials

Ilya V. Shadrivov, Alexander A. Zharov, and Yuri S. Kivshar
J. Opt. Soc. Am. B 23(3) 529-534 (2006)

Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays

Miguel Beruete, Mario Sorolla, and Igor Campillo
Opt. Express 14(12) 5445-5455 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Bose, Collected Physical Papers (London: Longmans, Green, 1927).
  2. A. Glagolewa-Arkadiewa, “Short electromagnetic waves of wavelength up to 82 microns,” Nature 2844, 640, (1924).
    [Crossref]
  3. P. F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications (IEEE Press, 1998).
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
    [Crossref]
  5. S. Cornbleet, Microwave Optics-The Optics of Microwave Antenna Design (Academic Press, 1976).
  6. J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1999).
  7. D. Rittenhouse, “An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse,” Trans. Amer. Phil. Soc. 2, 201–206 (1786).
    [Crossref]
  8. C. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973).
    [Crossref]
  9. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
    [Crossref] [PubMed]
  10. G. Zhang, J. Hu, and J. Zhao, “Study of the FIR bandpass filters consisting of two resonant grids,” Int. J. Infrared Millimeter Waves 7, 237–243 (1986).
    [Crossref]
  11. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [Crossref]
  12. C. M. Rhoads, E. K. Damon, and B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21, 2814 (1982).
    [Crossref] [PubMed]
  13. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  14. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [Crossref] [PubMed]
  15. J. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201–306 (2003).
  16. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,”, Science 305, 847–848 (2004).
    [Crossref] [PubMed]
  17. D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: Leaky wave model and open stopband effect,” Radio Sci. 40, 1–12 (2005).
    [Crossref]
  18. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [Crossref]
  19. M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999)
    [Crossref]
  20. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [Crossref] [PubMed]
  21. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [Crossref]
  22. V. G. Veselago, “The Electrodynamics of Substances with simultaneously negative values of e and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  23. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–796 (2001).
    [Crossref] [PubMed]
  24. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  25. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  26. M. Beruete, M. Sorolla, and I. Campillo,“Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays,” Opt. Express 14, 5445–5455 (2006).
    [Crossref] [PubMed]
  27. M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding left- or right-handed metamaterials by stacked cut-off metallic hole arrays,” accepted in the IEEE Trans. Antennas Propag., special issue in honor of Prof. L. B. Felsen, (2007).
  28. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
    [Crossref] [PubMed]
  29. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
    [Crossref] [PubMed]
  30. M. Beruete, M. Sorolla, and I. Campillo,”Inhibiting negative index of refraction by a band gap of stacked cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 17, 16–18 (2007).
    [Crossref]
  31. M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
    [Crossref]
  32. M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
    [Crossref]
  33. R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
    [Crossref] [PubMed]
  34. F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608-1-4 (2005).
    [Crossref]
  35. M. Beruete, M. Navarro-Cía, I. Campillo, P. Goy, and M. Sorolla, “Quasioptical polarizer based on self-complementary sub-wavelength hole arrays,” submitted to the IEEE Microwave and Wireless Components Letters.
  36. C. Dahl, P. Goy, and J. P. Kotthaus, “Magneto-Optical Millimeter-Wave Spectroscopy,” G. Grüner, ed., in Millimeter and Submillimeter Wave Spectroscopy of Solids, Topics in Applied Physics, (Springer, 1998).

2007 (4)

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding left- or right-handed metamaterials by stacked cut-off metallic hole arrays,” accepted in the IEEE Trans. Antennas Propag., special issue in honor of Prof. L. B. Felsen, (2007).

M. Beruete, M. Sorolla, and I. Campillo,”Inhibiting negative index of refraction by a band gap of stacked cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 17, 16–18 (2007).
[Crossref]

M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
[Crossref]

2006 (3)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, and I. Campillo,“Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays,” Opt. Express 14, 5445–5455 (2006).
[Crossref] [PubMed]

2005 (4)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[Crossref]

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608-1-4 (2005).
[Crossref]

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: Leaky wave model and open stopband effect,” Radio Sci. 40, 1–12 (2005).
[Crossref]

2004 (3)

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref] [PubMed]

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,”, Science 305, 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

J. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201–306 (2003).

2001 (2)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–796 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

1999 (4)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999)
[Crossref]

J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1999).

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

C. Dahl, P. Goy, and J. P. Kotthaus, “Magneto-Optical Millimeter-Wave Spectroscopy,” G. Grüner, ed., in Millimeter and Submillimeter Wave Spectroscopy of Solids, Topics in Applied Physics, (Springer, 1998).

C. Dahl, P. Goy, and J. P. Kotthaus, “Magneto-Optical Millimeter-Wave Spectroscopy,” G. Grüner, ed., in Millimeter and Submillimeter Wave Spectroscopy of Solids, Topics in Applied Physics, (Springer, 1998).

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

1986 (1)

G. Zhang, J. Hu, and J. Zhao, “Study of the FIR bandpass filters consisting of two resonant grids,” Int. J. Infrared Millimeter Waves 7, 237–243 (1986).
[Crossref]

1982 (1)

1973 (1)

C. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973).
[Crossref]

1968 (1)

V. G. Veselago, “The Electrodynamics of Substances with simultaneously negative values of e and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

1924 (1)

A. Glagolewa-Arkadiewa, “Short electromagnetic waves of wavelength up to 82 microns,” Nature 2844, 640, (1924).
[Crossref]

1786 (1)

D. Rittenhouse, “An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse,” Trans. Amer. Phil. Soc. 2, 201–206 (1786).
[Crossref]

Beruete, M.

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding left- or right-handed metamaterials by stacked cut-off metallic hole arrays,” accepted in the IEEE Trans. Antennas Propag., special issue in honor of Prof. L. B. Felsen, (2007).

M. Beruete, M. Sorolla, and I. Campillo,”Inhibiting negative index of refraction by a band gap of stacked cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 17, 16–18 (2007).
[Crossref]

M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
[Crossref]

M. Beruete, M. Sorolla, and I. Campillo,“Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays,” Opt. Express 14, 5445–5455 (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref] [PubMed]

M. Beruete, M. Navarro-Cía, I. Campillo, P. Goy, and M. Sorolla, “Quasioptical polarizer based on self-complementary sub-wavelength hole arrays,” submitted to the IEEE Microwave and Wireless Components Letters.

Bolivar, P. H.

J. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201–306 (2003).

Bose, J. C.

J. C. Bose, Collected Physical Papers (London: Longmans, Green, 1927).

Bravo-Abad, J.

Brolo, A.G.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
[Crossref] [PubMed]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
[Crossref] [PubMed]

Campillo, I.

M. Beruete, M. Sorolla, and I. Campillo,”Inhibiting negative index of refraction by a band gap of stacked cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 17, 16–18 (2007).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding left- or right-handed metamaterials by stacked cut-off metallic hole arrays,” accepted in the IEEE Trans. Antennas Propag., special issue in honor of Prof. L. B. Felsen, (2007).

M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
[Crossref]

M. Beruete, M. Sorolla, and I. Campillo,“Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays,” Opt. Express 14, 5445–5455 (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref] [PubMed]

M. Beruete, M. Navarro-Cía, I. Campillo, P. Goy, and M. Sorolla, “Quasioptical polarizer based on self-complementary sub-wavelength hole arrays,” submitted to the IEEE Microwave and Wireless Components Letters.

Chen, C. C.

C. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973).
[Crossref]

Cornbleet, S.

S. Cornbleet, Microwave Optics-The Optics of Microwave Antenna Design (Academic Press, 1976).

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Dahl, C.

C. Dahl, P. Goy, and J. P. Kotthaus, “Magneto-Optical Millimeter-Wave Spectroscopy,” G. Grüner, ed., in Millimeter and Submillimeter Wave Spectroscopy of Solids, Topics in Applied Physics, (Springer, 1998).

Damon, E. K.

de Abajo, F. J. García

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608-1-4 (2005).
[Crossref]

Dolado, J. S.

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[Crossref]

Dolado, J.S.

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Ebbesen, T.W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Falcone, F.

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding left- or right-handed metamaterials by stacked cut-off metallic hole arrays,” accepted in the IEEE Trans. Antennas Propag., special issue in honor of Prof. L. B. Felsen, (2007).

M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
[Crossref]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,”, Science 305, 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Glagolewa-Arkadiewa, A.

A. Glagolewa-Arkadiewa, “Short electromagnetic waves of wavelength up to 82 microns,” Nature 2844, 640, (1924).
[Crossref]

Goldsmith, P. F.

P. F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications (IEEE Press, 1998).

Gómez-Medina, R.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608-1-4 (2005).
[Crossref]

Gordon, R.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
[Crossref] [PubMed]

Goy, P.

C. Dahl, P. Goy, and J. P. Kotthaus, “Magneto-Optical Millimeter-Wave Spectroscopy,” G. Grüner, ed., in Millimeter and Submillimeter Wave Spectroscopy of Solids, Topics in Applied Physics, (Springer, 1998).

M. Beruete, M. Navarro-Cía, I. Campillo, P. Goy, and M. Sorolla, “Quasioptical polarizer based on self-complementary sub-wavelength hole arrays,” submitted to the IEEE Microwave and Wireless Components Letters.

Grüner, G.

C. Dahl, P. Goy, and J. P. Kotthaus, “Magneto-Optical Millimeter-Wave Spectroscopy,” G. Grüner, ed., in Millimeter and Submillimeter Wave Spectroscopy of Solids, Topics in Applied Physics, (Springer, 1998).

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Hu, J.

G. Zhang, J. Hu, and J. Zhao, “Study of the FIR bandpass filters consisting of two resonant grids,” Int. J. Infrared Millimeter Waves 7, 237–243 (1986).
[Crossref]

Jackson, D. R.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: Leaky wave model and open stopband effect,” Radio Sci. 40, 1–12 (2005).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1999).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kavanagh, K. L.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
[Crossref] [PubMed]

Kotthaus, J. P.

C. Dahl, P. Goy, and J. P. Kotthaus, “Magneto-Optical Millimeter-Wave Spectroscopy,” G. Grüner, ed., in Millimeter and Submillimeter Wave Spectroscopy of Solids, Topics in Applied Physics, (Springer, 1998).

Kurz, H.

J. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201–306 (2003).

Leathem, B.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
[Crossref] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Lomakin, V.

M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
[Crossref]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
[Crossref] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,”, Science 305, 847–848 (2004).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

McKinnon, A.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Munk, B. A.

Navarro, M.

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding left- or right-handed metamaterials by stacked cut-off metallic hole arrays,” accepted in the IEEE Trans. Antennas Propag., special issue in honor of Prof. L. B. Felsen, (2007).

Navarro-C?a, M.

M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
[Crossref]

Navarro-Cía, M.

M. Beruete, M. Navarro-Cía, I. Campillo, P. Goy, and M. Sorolla, “Quasioptical polarizer based on self-complementary sub-wavelength hole arrays,” submitted to the IEEE Microwave and Wireless Components Letters.

Oliner, A. A.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: Leaky wave model and open stopband effect,” Radio Sci. 40, 1–12 (2005).
[Crossref]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
[Crossref] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
[Crossref] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,”, Science 305, 847–848 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Rajora, A.

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
[Crossref] [PubMed]

Rhoads, C. M.

Rittenhouse, D.

D. Rittenhouse, “An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse,” Trans. Amer. Phil. Soc. 2, 201–206 (1786).
[Crossref]

Rivas, J.

J. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201–306 (2003).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Sáenz, J. J.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608-1-4 (2005).
[Crossref]

Schotsch, C.

J. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201–306 (2003).

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–796 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–796 (2001).
[Crossref] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–796 (2001).
[Crossref] [PubMed]

Sorolla, M.

M. Beruete, M. Sorolla, and I. Campillo,”Inhibiting negative index of refraction by a band gap of stacked cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 17, 16–18 (2007).
[Crossref]

M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding left- or right-handed metamaterials by stacked cut-off metallic hole arrays,” accepted in the IEEE Trans. Antennas Propag., special issue in honor of Prof. L. B. Felsen, (2007).

M. Beruete, M. Sorolla, and I. Campillo,“Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays,” Opt. Express 14, 5445–5455 (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref] [PubMed]

M. Beruete, M. Navarro-Cía, I. Campillo, P. Goy, and M. Sorolla, “Quasioptical polarizer based on self-complementary sub-wavelength hole arrays,” submitted to the IEEE Microwave and Wireless Components Letters.

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[Crossref]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999)
[Crossref]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The Electrodynamics of Substances with simultaneously negative values of e and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Williams, J. T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: Leaky wave model and open stopband effect,” Radio Sci. 40, 1–12 (2005).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Zhang, G.

G. Zhang, J. Hu, and J. Zhao, “Study of the FIR bandpass filters consisting of two resonant grids,” Int. J. Infrared Millimeter Waves 7, 237–243 (1986).
[Crossref]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
[Crossref] [PubMed]

Zhao, J.

G. Zhang, J. Hu, and J. Zhao, “Study of the FIR bandpass filters consisting of two resonant grids,” Int. J. Infrared Millimeter Waves 7, 237–243 (1986).
[Crossref]

Zhao, T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: Leaky wave model and open stopband effect,” Radio Sci. 40, 1–12 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999)
[Crossref]

IEEE Microwave Wirel. Compon. Lett. (2)

M. Beruete, M. Sorolla, and I. Campillo,”Inhibiting negative index of refraction by a band gap of stacked cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 17, 16–18 (2007).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

C. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973).
[Crossref]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

G. Zhang, J. Hu, and J. Zhao, “Study of the FIR bandpass filters consisting of two resonant grids,” Int. J. Infrared Millimeter Waves 7, 237–243 (1986).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

A. Glagolewa-Arkadiewa, “Short electromagnetic waves of wavelength up to 82 microns,” Nature 2844, 640, (1924).
[Crossref]

Nature Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[Crossref]

Opt. Express (1)

Opt. Express, (1)

M. Beruete, M. Sorolla, M. Navarro-Cϭa, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express, 151107–1114 (2007).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

J. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201–306 (2003).

Phys. Rev. E (1)

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608-1-4 (2005).
[Crossref]

Phys. Rev. Lett. (6)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1-4 (2005).
[Crossref] [PubMed]

R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401-1-4 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

Radio Sci. (1)

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: Leaky wave model and open stopband effect,” Radio Sci. 40, 1–12 (2005).
[Crossref]

Science (4)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,”, Science 305, 847–848 (2004).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–796 (2001).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The Electrodynamics of Substances with simultaneously negative values of e and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Trans. Amer. Phil. Soc. (1)

D. Rittenhouse, “An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse,” Trans. Amer. Phil. Soc. 2, 201–206 (1786).
[Crossref]

Other (7)

J. C. Bose, Collected Physical Papers (London: Longmans, Green, 1927).

S. Cornbleet, Microwave Optics-The Optics of Microwave Antenna Design (Academic Press, 1976).

J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1999).

P. F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications (IEEE Press, 1998).

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding left- or right-handed metamaterials by stacked cut-off metallic hole arrays,” accepted in the IEEE Trans. Antennas Propag., special issue in honor of Prof. L. B. Felsen, (2007).

M. Beruete, M. Navarro-Cía, I. Campillo, P. Goy, and M. Sorolla, “Quasioptical polarizer based on self-complementary sub-wavelength hole arrays,” submitted to the IEEE Microwave and Wireless Components Letters.

C. Dahl, P. Goy, and J. P. Kotthaus, “Magneto-Optical Millimeter-Wave Spectroscopy,” G. Grüner, ed., in Millimeter and Submillimeter Wave Spectroscopy of Solids, Topics in Applied Physics, (Springer, 1998).

Supplementary Material (1)

» Media 1: GIF (1240 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic representation and unit cell of a rectangular EOT hole array (a) and self-complementary EOT polarizer (b). Parameters: dx = 2.7 mm, dy = 5.0 mm, a = 2.5 mm, s = 0.2 mm. The metal thickness is t = 0 and conductivity σ→∞.

Fig. 2.
Fig. 2.

Simulation results of the polarization dependent transmission (a) and reflection (b) coefficients (continuous trace for co-polar and dashed one for cross-polar) for a slit array along the y-axis, corresponding to the cuts made on the self-complementary structure (green), hole array (red) and for the proposed polarizer (blue). The dimensions of the analyzed structures are given in Fig. 1(a) for the slit array (removing the thin metal lines of width s) and for the hole array. Fig. 1(b) gives the dimensions of the polarizer. Plot of the conduction and displacement currents at the resonance enhanced transmission peak with vertically polarized (Ey) light. Hole array case (c) and polarizer (d). The E-field is depicted in a perpendicular cutting plane through the middle of a hole and the scale is normalized to the maximum in each case.

Fig. 3.
Fig. 3.

Dispersion diagram for the co-polar (continuous red line) and cross-polarization (dashed red line) corresponding to the parameters dx = 1.8 mm, dy = 3.4 mm, a = 1.2 mm, s = 0.2 mm (for nomenclature check caption of Fig. 1(b)). The metal thickness is t = 35 microns and Cu conductivity σ = 5.8∙107. The substrate has the next characteristics: dielectric permittivity ε = 2.43 and thickness h = 0.49 mm The longitudinal lattice of the stack is dz = 0.525 mm.

Fig. 4.
Fig. 4.

Frozen image extracted from the given animation where an impinging circular polarized wave (upper right side) is transmitted through the LHM-polarizer and a pure vertically polarized wave emerges at the output side of the device (bottom left side). [Media 1]

Fig. 5.
Fig. 5.

Picture of the quasioptical measurement set-up where operates our AB MILLIMETRE vector network analyzer and a picture of the fabricated prototype. A detail of the fine fabrication process is also given.

Fig. 6.
Fig. 6.

Magnitude of the transmission and reflection coefficient of one wafer: co-polar (a) and cross-polar component (b) Magnitude of the transmission coefficient for several stacked wafers: co-polar (c) and cross-polar component (d) Phase of the transmission coefficient for several stacked wafers: co-polar (e) and cross-polar component (f) Magnitude of the reflection coefficient for several stacked wafers: co-polar (g) and cross-polar component (h)

Metrics