Abstract

It is theoretically and experimentally shown that phase-preserving amplitude regeneration by an all-optical amplitude limiter using saturation of four-wave mixing in a nonlinear fiber can enhance DPSK transmission performance. The limiter suppresses amplitude fluctuations of the signal, by which the nonlinear phase noise caused by self-phase modulation of the transmission fiber is reduced. A 10-Gbit/s short-pulse DPSK transmission experiment shows that the limiter inserted either after a transmitter or inside a recirculating transmission loop can enhance the performance. Theoretical expressions for the linear and nonlinear phase noise are derived, with which the influence of imperfections of the limiter is examined.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).
  2. J. P. Gordon and L. F. Mollenauer, "Phase noise in photonic communications systems using linear amplifiers," Opt. Lett. 15, 1351-1353 (1990).
    [CrossRef] [PubMed]
  3. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, "Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27,1616-1618 (2002).
    [CrossRef]
  4. C. Xu and X. Liu, "Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission," Opt. Lett. 27, 1619-1621 (2002).
    [CrossRef]
  5. C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
    [CrossRef]
  6. J. Hansryd, J. van Howe, and C. Xu, "Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links," IEEE Photon. Technol. Lett. 17, 232-234 (2005).
    [CrossRef]
  7. D. -S. Ly-Gagnon and K. Kikuchi, "Cancellation of nonlinear phase noise in DPSK transmission," 2004 Optoelectronics and Communications Conference and International Conference on Optical Internet (OECC/COIN 2004), paper 14C3-3 (2004).
  8. K. P. Ho and J. M. Kahn, "Electronic compensation technique to mitigate nonlinear phase noise," J. Lightwave Technol. 22, 779-783 (2004).
    [CrossRef]
  9. C. J. McKinstrie, S. Radic, and C. Xie, "Reduction of soliton phase jitter by in-line phase conjugation," Opt. Lett. 28, 1519-1521 (2003).
    [CrossRef] [PubMed]
  10. K. P. Ho, "Mid-span compensation of nonlinear phase noise," Opt. Commun. 245, 391-398 (2005).
    [CrossRef]
  11. M. Hanna, H. Porte, J. -P. Goedgebuer, and W. T. Rhodes, "Soliton optical phase control by use of in-line filters," Opt. Lett. 24, 732-734 (1999).
    [CrossRef]
  12. M. Matsumoto, "Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators," IEEE Photon. Technol. Lett. 17, 1055-1057 (2005).
    [CrossRef]
  13. M. Matsumoto, " Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers," J. Lightwave Technol. 23, 2696-2701 (2005).
    [CrossRef]
  14. K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of a RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
    [CrossRef]
  15. M. Matsumoto, "Nonlinear phase noise reduction of DPSK signals by an all-optical amplitude limiter using FWM in a fiber," 2006 European Conference on Optical Communication, paper Tu 1.3.5 (2006).
  16. K. Inoue, "Optical level equalisation based on gain saturation in fibre optical parametric amplifier," Electron. Lett. 36, 1016-1017 (2000).
    [CrossRef]
  17. M. Matsumoto, "Phase-preservation capability of all-optical amplitude regenerators using fiber nonlinearity," 2006 Optical Fiber Communication Conference and The National Fiber Optic Engineers Conference, paper JThB18 (2006).
  18. K. Inoue and T. Mukai, "Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier," Opt. Lett. 26, 10-12 (2001).
    [CrossRef]
  19. H. Toda, S. Kobayashi, and I. Akiyoshi, "Reduction of pulse-to-pulse interaction of optical RZ pulses in dispersion managed fiber," 2002 Asia-Pacific Optical and Wireless Communications, paper 4906-54 (2002).
  20. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 14, 911-913 (2002).
    [CrossRef]

2007 (1)

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of a RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

2005 (4)

J. Hansryd, J. van Howe, and C. Xu, "Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links," IEEE Photon. Technol. Lett. 17, 232-234 (2005).
[CrossRef]

K. P. Ho, "Mid-span compensation of nonlinear phase noise," Opt. Commun. 245, 391-398 (2005).
[CrossRef]

M. Matsumoto, "Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators," IEEE Photon. Technol. Lett. 17, 1055-1057 (2005).
[CrossRef]

M. Matsumoto, " Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers," J. Lightwave Technol. 23, 2696-2701 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (4)

X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, "Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27,1616-1618 (2002).
[CrossRef]

C. Xu and X. Liu, "Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission," Opt. Lett. 27, 1619-1621 (2002).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 14, 911-913 (2002).
[CrossRef]

C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
[CrossRef]

2001 (1)

2000 (1)

K. Inoue, "Optical level equalisation based on gain saturation in fibre optical parametric amplifier," Electron. Lett. 36, 1016-1017 (2000).
[CrossRef]

1999 (1)

1990 (1)

Electron. Lett. (2)

C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
[CrossRef]

K. Inoue, "Optical level equalisation based on gain saturation in fibre optical parametric amplifier," Electron. Lett. 36, 1016-1017 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Matsumoto, "Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators," IEEE Photon. Technol. Lett. 17, 1055-1057 (2005).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, "2R-regeneration of a RZ-DPSK signal using a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 146-148 (2007).
[CrossRef]

J. Hansryd, J. van Howe, and C. Xu, "Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links," IEEE Photon. Technol. Lett. 17, 232-234 (2005).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 14, 911-913 (2002).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

K. P. Ho, "Mid-span compensation of nonlinear phase noise," Opt. Commun. 245, 391-398 (2005).
[CrossRef]

Opt. Lett. (6)

Other (5)

K. P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).

D. -S. Ly-Gagnon and K. Kikuchi, "Cancellation of nonlinear phase noise in DPSK transmission," 2004 Optoelectronics and Communications Conference and International Conference on Optical Internet (OECC/COIN 2004), paper 14C3-3 (2004).

M. Matsumoto, "Nonlinear phase noise reduction of DPSK signals by an all-optical amplitude limiter using FWM in a fiber," 2006 European Conference on Optical Communication, paper Tu 1.3.5 (2006).

M. Matsumoto, "Phase-preservation capability of all-optical amplitude regenerators using fiber nonlinearity," 2006 Optical Fiber Communication Conference and The National Fiber Optic Engineers Conference, paper JThB18 (2006).

H. Toda, S. Kobayashi, and I. Akiyoshi, "Reduction of pulse-to-pulse interaction of optical RZ pulses in dispersion managed fiber," 2002 Asia-Pacific Optical and Wireless Communications, paper 4906-54 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig.1.
Fig.1.

Amplified transmission system consisting of M spans. Effects of amplitude limiters inserted at either A or B are examined.

Fig. 2.
Fig. 2.

All-optical amplitude limiter using FWM in a highly nonlinear fiber (HNLF).

Fig. 3.
Fig. 3.

Output versus input powers of the FWM-based limiter for different signal and pump frequency separations Δv.

Fig. 4.
Fig. 4.

Standard deviation of phase noise at the receiver versus signal power. Solid, dashed, and dash-dotted curves correspond to the cases where no amplitude limiters are used, an amplitude limiter is inserted at the output of the transmitter, and amplitude limiters are inserted every amplifier span, respectively.

Fig. 5.
Fig. 5.

Standard deviation of phase noise at the receiver versus signal power. An amplitude limiter with imperfect noise suppression is inserted at the output of the transmitter.

Fig. 6.
Fig. 6.

Standard deviation of phase noise at the receiver versus signal power. Amplitude limiters with imperfect noise suppression are inserted every amplifier span.

Fig. 7.
Fig. 7.

Setup of 10Gbit/s short-pulse DPSK transmission. An amplitude limiter based on FWM in fiber is inserted at either A or B. MLLD: mode-locked diode laser, LNM: LiNbO3 modulator, SW1,2: acousto-optic switches, DI: delay interferometer, LPF: lowpass filter, ED: error detector.

Fig. 8.
Fig. 8.

Power transfer function and Q factor for the FWM-based amplitude limiter. Solid and dashed curves correspond to the cases where pump power is on and off, respectively.

Fig. 9.
Fig. 9.

BER versus averaged signal power launched to the transmission fiber. An amplitude limiter is inserted at the output of the transmitter (point A in Fig. 7). Solid and dashed curves correspond to the cases where pump power is on and off, respectively.

Fig. 10.
Fig. 10.

BER versus averaged signal power launched to the transmission fiber. Amplitude limiters are inserted in the recirculating loop (point B in Fig. 7). Solid and dashed curves correspond to the cases where pump power is on and off, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δφ 2 = N s B 2 P sig + 2 P sig N s B ( γL eff ) 2 M 2 + N a BM 2 P sig + 2 P sig N a B ( γL eff ) 2 M ( M 1 ) ( 2 M 1 ) 6 ,
δϕ 2 = N s B 2 P sig + N a BM 2 P sig + 2 P sig N a B ( γL eff ) 2 M ( M 1 ) ( 2 M 1 ) 6 + N r B 2 G r P sig ,
δϕ 2 = N s B 2 P sig + N a BM 2 P sig + N r BM 2 G r P sig .
δϕ 2 = N s B 2 P sig + N a BM 2 P sig + 2 P sig N a B ( γL eff ) 2 M ( M 1 ) ( 2 M 1 ) 6 + N r BM 2 G r P sig + ( k + P sig γL eff rM ) 2 ( 2 N s B P sig + 2 N r B G r P sig ) .
δϕ 2 = { 1 + 4 ( k + P sig γL eff r ) 2 [ ( 1 r M ) ( 1 r ) ] 2 N s B 2 P sig } + { M + 4 ( k + P sig γL eff ) 2 i = 1 M [ ( 1 r M i + 1 ) (1 r) ] 2 } N r BM 2 G r P sig + { M + 4 ( k + P sig γL eff ) 2 i = 1 M 1 [ ( 1 r M i ) (1 r) ] 2 } N a B 2 P sig .

Metrics