Abstract

We report the tunable, CW and quasi CW laser operation at room temperature of an highly doped (30% at.) Yb:YLF crystal longitudinally pumped by a fiber coupled laser diode array. The CW output power is 1.15 W vs. an absorbed pump power of 6 W, with a slope efficiency of 31%. In quasi-CW operation (20% duty factor @10 Hz) an output power of 4 W with an absorbed power of 9.5 W, and a slope efficiency of 62.8% were obtained. The tuning range spans from 1022 to 1075 nm. To our knowledge, these are among the best experimental results obtained at room temperature with Yb doped YLF.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1089-1091 (1991).
    [CrossRef] [PubMed]
  2. T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
    [CrossRef]
  3. U. Brauch, A. Giesen, M. Karszewski, Chr. Stewen, and A. Voss, "Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm," Opt. Lett. 20, 713-715 (1995).
    [CrossRef] [PubMed]
  4. A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. George, P. Camy, J. L. Doualan, and R. Moncorgé, "High-power tunable diode-pumped Yb3+:CaF2 laser," Opt. Lett. 29, 1897-1881 (2004).
    [CrossRef] [PubMed]
  5. V. Petit, J. L. Doualan, P. Camy, V. Ménard, R. Moncorgè, "CW and tunable laser operation of Yb3+ doped CaF2," Appl. Phys B. 78, 681-684 (2004).
    [CrossRef]
  6. G. Galzerano, P. Laporta, E. Sani, L. Bonelli, A. Toncelli, M. Tonelli, A. Pesatori and C. Svelto, "Room-temperature diode-pumped Yb:KYF4 laser," Opt. Lett. 31, 3291-3293 (2006).
    [CrossRef] [PubMed]
  7. T. J. Carrig, J. W. Hobbs, C. J. Urbina, A. K. Hankla, G. J. Wagner, C. P. Hale, S. W. Henderson, R. A. Swirbalus, C. A. Denmann, "Single-frequency, diode-pumped Yb:YAG and Yb:YLF lasers," in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series ~Optical Society of America, Washington, D.C., 2000, pp. 144-149.
  8. J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, "Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system," Appl. Opt. 40, 3542-3546 (2001).
    [CrossRef]
  9. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, "Improved high-field laser characteristics of diode-pumped Yb:LiYF4 crystal at low temperature," Opt. Express 10, 455-460 (2002).
    [PubMed]
  10. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, "30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier," Opt. Lett. 28, 2121-2123 (2003).
    [CrossRef] [PubMed]
  11. A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon "Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality," Opt. Mater. 26, 375-383 (2004).
    [CrossRef]
  12. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179 (1993).
    [CrossRef]
  13. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, "On thermal effects in solid state laser: the case of Ytterbium-doped materials," Prog. Quantum Electron. 30, 89-153 (2006).
    [CrossRef]
  14. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon "Spectroscopic properties of Yb3+:LiLuF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4," J. Alloy Compd. 380, 15-26 (2004).
    [CrossRef]
  15. B. F. Aull and H. P. Jenssen "Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section," IEEE J. Quantum Electron. 18, 925 -930 (1982).
    [CrossRef]
  16. P. H. Haumesser, R. Gaume, B. Viana, and D. Vivien, "Determination of laser parameters of ytterbium doped oxide crystalline materials," J. Opt. Soc. Am. B 19, 2365-2375 (2002).
    [CrossRef]
  17. V. Petit, J. L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, "CW and tunable laser operation of Yb3+doped CaF2," Appl. Phys. B. 78, 681-684 (2004)
    [CrossRef]

2006 (2)

G. Galzerano, P. Laporta, E. Sani, L. Bonelli, A. Toncelli, M. Tonelli, A. Pesatori and C. Svelto, "Room-temperature diode-pumped Yb:KYF4 laser," Opt. Lett. 31, 3291-3293 (2006).
[CrossRef] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, "On thermal effects in solid state laser: the case of Ytterbium-doped materials," Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

2004 (5)

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon "Spectroscopic properties of Yb3+:LiLuF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4," J. Alloy Compd. 380, 15-26 (2004).
[CrossRef]

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon "Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality," Opt. Mater. 26, 375-383 (2004).
[CrossRef]

V. Petit, J. L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, "CW and tunable laser operation of Yb3+doped CaF2," Appl. Phys. B. 78, 681-684 (2004)
[CrossRef]

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. George, P. Camy, J. L. Doualan, and R. Moncorgé, "High-power tunable diode-pumped Yb3+:CaF2 laser," Opt. Lett. 29, 1897-1881 (2004).
[CrossRef] [PubMed]

V. Petit, J. L. Doualan, P. Camy, V. Ménard, R. Moncorgè, "CW and tunable laser operation of Yb3+ doped CaF2," Appl. Phys B. 78, 681-684 (2004).
[CrossRef]

2003 (1)

2002 (2)

2001 (1)

1995 (1)

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179 (1993).
[CrossRef]

1991 (1)

1982 (1)

B. F. Aull and H. P. Jenssen "Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section," IEEE J. Quantum Electron. 18, 925 -930 (1982).
[CrossRef]

Appl. Opt. (1)

Appl. Phys B. (1)

V. Petit, J. L. Doualan, P. Camy, V. Ménard, R. Moncorgè, "CW and tunable laser operation of Yb3+ doped CaF2," Appl. Phys B. 78, 681-684 (2004).
[CrossRef]

Appl. Phys. B. (1)

V. Petit, J. L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, "CW and tunable laser operation of Yb3+doped CaF2," Appl. Phys. B. 78, 681-684 (2004)
[CrossRef]

IEEE J. Quantum Electron. (2)

B. F. Aull and H. P. Jenssen "Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section," IEEE J. Quantum Electron. 18, 925 -930 (1982).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179 (1993).
[CrossRef]

J. Alloy Compd. (1)

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon "Spectroscopic properties of Yb3+:LiLuF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4," J. Alloy Compd. 380, 15-26 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (1)

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon "Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality," Opt. Mater. 26, 375-383 (2004).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, "On thermal effects in solid state laser: the case of Ytterbium-doped materials," Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

Other (2)

T. J. Carrig, J. W. Hobbs, C. J. Urbina, A. K. Hankla, G. J. Wagner, C. P. Hale, S. W. Henderson, R. A. Swirbalus, C. A. Denmann, "Single-frequency, diode-pumped Yb:YAG and Yb:YLF lasers," in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series ~Optical Society of America, Washington, D.C., 2000, pp. 144-149.

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Boule of YLF: 30% Yb as grown

Fig. 2.
Fig. 2.

Room temperature absorption spectra for the YLF: 30% Yb

Fig. 3.
Fig. 3.

Room temperature polarized emission cross section for the YLF 30% Yb

Fig. 4.
Fig. 4.

Layout of the laser cavity. EM: End mirror, flat, FM: folding mirror (radius of curvature 150 mm); OC: output coupler, flat ; the arrow marked with c denotes the direction of the crystal optical axis. The inset shows the configuration of the cavity arm between FM and OC as used for the tunable laser, where P: tuning prism; S: slit.

Fig. 5.
Fig. 5.

Instantaneous output power vs. instantaneous absorbed power, for different pump duty factors (from 40% to 100% in (a), 20% in (b)). The OC transmission is 6%, the free running lasing wavelength is around 1049 nm. The slope efficiencies reported in the graphs are calculated for an absorbed power higher than 4 W in (a), 6 W in (b).

Fig. 6.
Fig. 6.

CW output power as a function of wavelength for various absorbed pump power levels. The transmission of the output coupler is 2%

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ em = α N Z l Z u exp [ E ZL kT ]

Metrics