Abstract

We present a spectral domain polarization sensitive optical coherence tomography (PSOCT) system that incorporates: 1) a spectrometer configured with a single line-scan camera for spectral interferogram detection, 2) a reference delay line assembly that provides a fixed optical pathlength delay between the lights of two orthogonal polarization states, and 3) a moving reference mirror that introduces a constant modulation frequency in the spatial spectral interferograms while the probe beam is scanned over the sample. The system utilizes the full range of complex Fourier plane for polarization sensitive imaging, where OCT images formed by the vertical and horizontal polarization beam components appear adjacent to each other. It is able to provide imaging of retardation, fast optic axis and backscattered intensity of the interrogated biological tissue. The system is experimentally demonstrated both in vitro and in vivo with an imaging rate at 10,000 A scans per second.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science  254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A.F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical Coherence Tomography - Principles and Applications," Rep. Prog. Phys.  66, 239-303 (2003).
    [CrossRef]
  3. P. H. Tomlins and R. K. Wang, "Theory, development and applications of optical coherence tomography," J Phys. D: Appl. Phys. 38, 2519-2535 (2005).
    [CrossRef]
  4. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization sensitive low coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  5. J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  6. J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
    [CrossRef]
  7. C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
    [CrossRef]
  8. S. L. Jiao and L. H. V. Wang, "Jones-matrix imaging of biological tissues with quadruple- channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
    [CrossRef] [PubMed]
  9. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474-479 (2001).
    [CrossRef] [PubMed]
  10. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, "Imaging thermally damaged tissue by polarization sensitive optical coherence tomography," Opt. Express 3, 212-218 (1998).
    [CrossRef] [PubMed]
  11. K. Schoenenberger, J. B. W. Colston, D. J. Maitland, L. B. Da Silva, andM. J. Everett, "Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography," Appl. Opt. 37, 6026-6036 (1998).
    [CrossRef]
  12. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, "Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging," Appl. Opt. 42, 5191-5197 (2003).
    [CrossRef] [PubMed]
  13. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, "Advances in optical coherence tomography imaging for dermatology," J. Invest. Dermatol. 123, 458-463 (2004).
    [CrossRef] [PubMed]
  14. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, "Determination of burn depth by polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 207-212 (2004).
    [CrossRef] [PubMed]
  15. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, "Polarization-sensitive optical coherence tomography of dental structures," Caries Res. 34, 59-69 (2000).
    [CrossRef]
  16. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, "Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography," J. Biomed. Opt. 7, 618-627 (2002).
    [CrossRef] [PubMed]
  17. Y. Chen, L. Otis, D. Piao, and Q. Zhu, "Characterization of dentin, enamel, and carious lesions by a polarization sensitive optical coherence tomography system," Appl. Opt. 44, 2041-2048 (2005).
    [CrossRef] [PubMed]
  18. R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, "Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography," J. Biomed. Opt 11, 014016 (2006).
    [CrossRef] [PubMed]
  19. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
    [CrossRef] [PubMed]
  20. E. Götzinger, M . Pircher, M . Sticker, A. F. Fercher, and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
    [CrossRef] [PubMed]
  21. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
    [CrossRef]
  22. M. G. Ducros, J. F. de Boer, H. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and I. H. G. Rylander, III, "Polarization sensitive optical coherence tomography of the rabbit eye," IEEE J. Sel. Top. Quantum Electron. 5, 1159-1167 (1999).
    [CrossRef]
  23. M. G. Ducros, J. D. Marsack, H. G. RylanderIII, S. L. Thomsen, and T. E. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 18, 2945-2956 (2001).
    [CrossRef]
  24. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
    [CrossRef] [PubMed]
  25. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004).
    [CrossRef] [PubMed]
  26. N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 22, 552-560 (2005).
    [CrossRef]
  27. W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J.G. Fujimoto, M.E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: Implications for osteoarthritis," J. Rheumatology 28: 1311-1318 (2001)
  28. S. J. Matcher, C. P. Winlove, S. V. Gangnus, "The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography," Phys. Med. Biol. 49, 1295-1306 (2004)
    [CrossRef] [PubMed]
  29. N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, "The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography," J Phys. D -Appl. Phys. 38, 2612-2619 (2005).
    [CrossRef]
  30. N. Ugryumova, S. V. Gangnus, and S. J. Matcher, "Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography," Opt. Lett. 31, 2305-2307 (2006)
    [CrossRef] [PubMed]
  31. T. Q. Xie, S. G. Guo, J. Zhang,  et al., "Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography," Lasers Surg. Med. 38, 852-865 (2006).
    [CrossRef] [PubMed]
  32. T. Q. Xie, S. G. Guo, J. Zhang,  et al., "Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus," J. Biomed. Opt. 11, 05385RR (2006)
    [CrossRef]
  33. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, "In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization sensitive optical coherence tomography," Opt. Express 14, 1547-1556 (2006).
    [CrossRef] [PubMed]
  34. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  35. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G.J . Tearney, and B. E. Bouma, "Improved signal-tonoise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  36. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
    [CrossRef]
  37. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13, 3931-3944 (2005).
    [CrossRef] [PubMed]
  38. E. Götzinger, M. Pircher, C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
    [CrossRef] [PubMed]
  39. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006).
    [CrossRef] [PubMed]
  40. C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001).
    [CrossRef] [PubMed]
  41. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, "Single camera based spectral domain polarization sensitive optical coherence tomography," Opt. Express,  15, 1054-1063 (2007).
    [CrossRef] [PubMed]
  42. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007).
    [CrossRef] [PubMed]
  43. R. K. Wang, "In vivo full range complex Fourier Domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007)
    [CrossRef]
  44. R. K. Wang, S. L. Jacuqes, Z. Ma, S. Hurst, S. Hanson and A. Gruber, "Three dimensional optical angiography," Opt. Express,  15, 4083-4097 (2007)
    [CrossRef] [PubMed]
  45. R. K. Wang and Z. H. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
    [CrossRef] [PubMed]
  46. C. Dorrer, N. Belabas, J. P. Likforman, M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral Interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]
  47. G. Hausler, M. W. Lindner, "Coherence radar and Spectral radar- new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998)
    [CrossRef]
  48. Z. H. Ding, R. W. Ren, Y. H. Zhao, J. S. Nelson, Z. P. Chen, "High-resolution optical coherence tomography over a large depth range with an axicon lens," Opt. Lett. 27, 243-245 (2002).
    [CrossRef]
  49. R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt.  47, 103-120 (2000).
  50. B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express  11, 782-793 (2003).
    [CrossRef] [PubMed]

2007 (4)

2006 (6)

J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, "In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization sensitive optical coherence tomography," Opt. Express 14, 1547-1556 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

N. Ugryumova, S. V. Gangnus, and S. J. Matcher, "Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography," Opt. Lett. 31, 2305-2307 (2006)
[CrossRef] [PubMed]

R. K. Wang and Z. H. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
[CrossRef] [PubMed]

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, "Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography," J. Biomed. Opt 11, 014016 (2006).
[CrossRef] [PubMed]

T. Q. Xie, S. G. Guo, J. Zhang,  et al., "Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography," Lasers Surg. Med. 38, 852-865 (2006).
[CrossRef] [PubMed]

2005 (6)

2004 (7)

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

E. Götzinger, M . Pircher, M . Sticker, A. F. Fercher, and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef] [PubMed]

S. J. Matcher, C. P. Winlove, S. V. Gangnus, "The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography," Phys. Med. Biol. 49, 1295-1306 (2004)
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, "Advances in optical coherence tomography imaging for dermatology," J. Invest. Dermatol. 123, 458-463 (2004).
[CrossRef] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, "Determination of burn depth by polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 207-212 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004).
[CrossRef] [PubMed]

2003 (5)

2002 (5)

2001 (4)

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J.G. Fujimoto, M.E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: Implications for osteoarthritis," J. Rheumatology 28: 1311-1318 (2001)

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

M. G. Ducros, J. D. Marsack, H. G. RylanderIII, S. L. Thomsen, and T. E. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 18, 2945-2956 (2001).
[CrossRef]

C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001).
[CrossRef] [PubMed]

2000 (4)

R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt.  47, 103-120 (2000).

C. Dorrer, N. Belabas, J. P. Likforman, M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral Interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, "Polarization-sensitive optical coherence tomography of dental structures," Caries Res. 34, 59-69 (2000).
[CrossRef]

1999 (2)

M. G. Ducros, J. F. de Boer, H. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and I. H. G. Rylander, III, "Polarization sensitive optical coherence tomography of the rabbit eye," IEEE J. Sel. Top. Quantum Electron. 5, 1159-1167 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
[CrossRef]

1998 (3)

1997 (1)

1992 (1)

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science  254, 1178-1181 (1991).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. K. Wang, "In vivo full range complex Fourier Domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007)
[CrossRef]

Caries Res. (1)

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, "Polarization-sensitive optical coherence tomography of dental structures," Caries Res. 34, 59-69 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. G. Ducros, J. F. de Boer, H. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and I. H. G. Rylander, III, "Polarization sensitive optical coherence tomography of the rabbit eye," IEEE J. Sel. Top. Quantum Electron. 5, 1159-1167 (1999).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

J Phys. D -Appl. Phys. (1)

N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, "The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography," J Phys. D -Appl. Phys. 38, 2612-2619 (2005).
[CrossRef]

J Phys. D: Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, "Theory, development and applications of optical coherence tomography," J Phys. D: Appl. Phys. 38, 2519-2535 (2005).
[CrossRef]

J. Biomed. Opt (1)

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, "Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography," J. Biomed. Opt 11, 014016 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (7)

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, "Determination of burn depth by polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 207-212 (2004).
[CrossRef] [PubMed]

E. Götzinger, M . Pircher, M . Sticker, A. F. Fercher, and C. K. Hitzenberger, "Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 94-102 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004).
[CrossRef] [PubMed]

S. L. Jiao and L. H. V. Wang, "Jones-matrix imaging of biological tissues with quadruple- channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474-479 (2001).
[CrossRef] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, "Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography," J. Biomed. Opt. 7, 618-627 (2002).
[CrossRef] [PubMed]

G. Hausler, M. W. Lindner, "Coherence radar and Spectral radar- new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998)
[CrossRef]

J. Invest. Dermatol. (1)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, "Advances in optical coherence tomography imaging for dermatology," J. Invest. Dermatol. 123, 458-463 (2004).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt.  47, 103-120 (2000).

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Rheumatology (1)

W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J.G. Fujimoto, M.E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: Implications for osteoarthritis," J. Rheumatology 28: 1311-1318 (2001)

Lasers Surg. Med. (1)

T. Q. Xie, S. G. Guo, J. Zhang,  et al., "Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography," Lasers Surg. Med. 38, 852-865 (2006).
[CrossRef] [PubMed]

Opt. Express (11)

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express  11, 782-793 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001).
[CrossRef] [PubMed]

J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, "Imaging thermally damaged tissue by polarization sensitive optical coherence tomography," Opt. Express 3, 212-218 (1998).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm," Opt. Express 13, 3931-3944 (2005).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
[CrossRef] [PubMed]

J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, "In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization sensitive optical coherence tomography," Opt. Express 14, 1547-1556 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, "Single camera based spectral domain polarization sensitive optical coherence tomography," Opt. Express,  15, 1054-1063 (2007).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacuqes, Z. Ma, S. Hurst, S. Hanson and A. Gruber, "Three dimensional optical angiography," Opt. Express,  15, 4083-4097 (2007)
[CrossRef] [PubMed]

Opt. Lett. (8)

N. Ugryumova, S. V. Gangnus, and S. J. Matcher, "Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography," Opt. Lett. 31, 2305-2307 (2006)
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G.J . Tearney, and B. E. Bouma, "Improved signal-tonoise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Z. H. Ding, R. W. Ren, Y. H. Zhao, J. S. Nelson, Z. P. Chen, "High-resolution optical coherence tomography over a large depth range with an axicon lens," Opt. Lett. 27, 243-245 (2002).
[CrossRef]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
[CrossRef]

Phys. Med. Biol. (3)

R. K. Wang and Z. H. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
[CrossRef] [PubMed]

S. J. Matcher, C. P. Winlove, S. V. Gangnus, "The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography," Phys. Med. Biol. 49, 1295-1306 (2004)
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A.F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical Coherence Tomography - Principles and Applications," Rep. Prog. Phys.  66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science  254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (1)

T. Q. Xie, S. G. Guo, J. Zhang,  et al., "Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus," J. Biomed. Opt. 11, 05385RR (2006)
[CrossRef]

Supplementary Material (3)

» Media 1: AVI (2629 KB)     
» Media 2: AVI (2588 KB)     
» Media 3: AVI (2588 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the SD-PSOCT system where SLD represents the superluminescent diode, L the lens, P the linear polarizer, BS the polarization-insensitive beam splitter, QWP the quarter wave plate, M the mirror, N the neutral density filter, PC the polarization controller, C the collimator, TG the transmission grating, and CCD the charge coupled device.

Fig. 2.
Fig. 2.

Schematic of the relationship between the mirror position and the sample beam.

Fig. 3.
Fig. 3.

OCT images of a chicken breast sample acquired using the SD-PSOCT system: (A) direct reconstruction using standard FDOCT algorithm, and (B) reconstruction by use of the full range complex OCT method leading to the OCT images formed by the vertically and horizontally polarized beam components displayed side by side, respectively.

Fig. 4.
Fig. 4.

Measured system sensitivity against imaging depth for vertically (red squares) and horizontally (blue circles) polarized channels. The solid curve was resulted from the 4th order polynomial curve fitting to the measured data.

Fig. 5.
Fig. 5.

Polarization sensitive SD-PSOCT images (B scan) of chicken breast tissue in vitro. (A) Intensity (log scale). (B) Retardation with display scale 0 (black) and 90 (white) degrees. (C) Fast axis orientation with display scale from 0 (black) and 180 (white) degrees. Image size is 3×4 mm̂2 (depth x lateral).

Fig. 6.
Fig. 6.

Plots show the maximum errors of retardation, due to the correction of depth-dependent system sensitivity, against OCT signal strength at ZDL received from the sample. The simulations considered are for maximum errors incurred for the imaging depth up to 3.5mm (top blue curve), and 2.0 mm as in our current system (bottom red curve).

Fig. 7.
Fig. 7.

In vivo SD-PSOCT results of the proximal nail fold of a human volunteer showing (A) Intensity (2.6MBytes) [Media 1], (B) phase retardation (2.6MBytes) [Media 2], and (C) fast axis orientation (2.6MBytes) [Media 3] images, respectively. Within images, E and D represent the epidermis and dermis near to the nail fold; C, the cuticle; P, the nail plate; B, the nail bed; EDB, the epidermal-dermal boundary; and LH, the lower half of the nail plate. Note that (A) is displayed in log scale. (B) is coded from 0 to 90 degrees and (C) from 0 to 180 degrees.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E r H = R H exp [ i 2 k ( r d ) ] ; E r V = R V exp [ i 2 k ( r + d ) ]
E s H = S H ( z ) exp [ i 2 k ( z + r ) ] dz ; E s V = S V ( z ) exp [ i 2 k ( z + r ) ] dz
I = E H r + E V r + E H s + E V s 2 = E H r + E H s 2 + E V r + E V s 2
I k z = A H ( z ) cos [ 2 k ( z + d ) + φ H ( z ) ] + A V ( z ) cos [ 2 k ( z d ) + φ V ( z ) ]
I ( k ) = A H ( z ) cos [ 2 k ( z + d ) + 2 π f 0 t + φ H ( z ) ] + A V ( z ) cos [ 2 k ( z d ) + 2 π f 0 t + φ V ( z ) ]
I ˜ ( k ) = A H ( z ) exp { i [ 2 k ( z + d ) ] + 2 π f 0 t + φ H ( z ) } + A V ( z ) exp { i [ 2 k ( z d ) + 2 π f 0 t + φ V ( z ) ] }
δ ( z ) = arctan [ A V ( z ) A H ( z ) ]
R ( z ) = A V ( z ) 2 + A H ( z ) 2
θ ( z ) = π [ Φ V ( z ) Φ H ( z ) ] 2
A ´ ( z ) = A ( z ) c ( z ) ,
δ ( z ) = arctan [ c ( z ) ( A V ( z d ) + N ) c ( z d ) ( A H ( z ) + N ) ]

Metrics