Abstract

Using cavity-enhanced non-degenerate parametric down-conversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  2. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
    [CrossRef] [PubMed]
  3. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
    [CrossRef] [PubMed]
  4. J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, "Quantum teleportation between light and matter," Nature 443, 557-560 (2006).
    [CrossRef] [PubMed]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  6. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, "Electrically driven single-photon source," Science 295, 102-105 (2002).
    [CrossRef]
  7. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
    [CrossRef] [PubMed]
  8. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett 25, 1294-1296 (2000).
    [CrossRef]
  9. B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
    [CrossRef] [PubMed]
  10. B. Darquie, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, "Controlled single-photon emission from a single trapped two-level atom," Science 309, 454-456 (2005).
    [CrossRef] [PubMed]
  11. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  12. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "Deterministic generation of single photons from one atom trapped in a cavity," Science 303, 1992-1994 (2004).
    [CrossRef] [PubMed]
  13. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system," Nature 431, 1075-1078 (2004).
    [CrossRef] [PubMed]
  14. T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, "Polarization-controlled single photons," Phys. Rev. Lett. 98, 063601 (2007).
    [CrossRef] [PubMed]
  15. D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Deterministic single photons via conditional quantum evolution," Phys. Rev. Lett. 97, 013601 (2006).
    [CrossRef] [PubMed]
  16. J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, "A high-brightness source of narrowband, identical-photon pairs," Science 313, 74-77 (2006).
    [CrossRef] [PubMed]
  17. S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, "Deterministic and storable single-photon source based on a quantum memory," Phys. Rev. Lett. 97, 173004 (2006).
    [CrossRef] [PubMed]
  18. C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
    [CrossRef] [PubMed]
  19. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  20. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, "Quantum state reconstruction of the single-photon fock state," Phys. Rev. Lett. 87, 050402 (2001).
    [CrossRef] [PubMed]
  21. T. Pittman, B. Jacobs, and J. Franson, "Heralding single photons from pulsed parametric down-conversion," Opt. Commun. 246, 545-550 (2005).
    [CrossRef]
  22. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004).
    [CrossRef] [PubMed]
  23. J. Fulconis, O. Alibart,W. Wadsworth, P. Russell, and J. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005).
    [CrossRef] [PubMed]
  24. Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62, 033804 (2000).
    [CrossRef]
  25. H. Wang, T. Horikiri, and T. Kobayashi, "Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion," Phys. Rev. A 70, 043804 (2004).
    [CrossRef]
  26. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Time-bin-modulated biphotons from cavity-enhanced downconversion," Phys. Rev. Lett. 97, 223601 (2006).
    [CrossRef] [PubMed]
  27. A. Zavatta, S. Viciani, and M. Bellini, "Tomographic reconstruction of the single-photon fock state by highfrequency homodyne detection," Phys. Rev. A 70, 053821 (2004).
    [CrossRef]
  28. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Quantum homodyne tomography of a two-photon fock state," Phys. Rev. Lett. 96, 213601 (2006).
    [CrossRef] [PubMed]
  29. P. D. Drummond and M. D. Reid, "Correlations in nondegenerate parametric oscillation. II. Below threshold results," Phys. Rev. A 41, 3930-3949 (1990).
    [CrossRef] [PubMed]
  30. C. Schori, J. L. Sørensen, and E. S. Polzik, "Narrow-band frequency tunable light source of continuous quadrature entanglement," Phys. Rev. A 66, 033802 (2002).
    [CrossRef]
  31. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, "Generation of a superposition of odd photon number states for quantum information networks," Phys. Rev. Lett. 97, 083604 (2006).
    [CrossRef] [PubMed]
  32. A. E. B. Nielsen and K. Mølmer, "Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator," Phys. Rev. A 75, 023806 (2007).
    [CrossRef]
  33. Z. Y. Ou and H. J. Kimble, "Probability distribution of photoelectric currents in photodetection processes and its connection to the measurement of a quantum state," Phys. Rev. A 52, 3126 (1995).
    [CrossRef] [PubMed]
  34. A. I. Lvovsky, "Iterative maximum-likelihood reconstruction in quantum homodyne tomography," J. Opt. B: Quantum and Semiclassical Optics 6, S556-S559 (2004).
    [CrossRef]
  35. N. B. Grosse, T. Symul, M. Stobi’nska, T. C. Ralph, and P. K. Lam, "Measuring photon anti-bunching from continuous variable sideband squeezing," quant-ph/0609033.
  36. G. T. Foster, W. P. Smith, J. E. Reiner, and L. A. Orozco, "Time-dependent electric field fluctuations at the subphoton level," Phys. Rev. A 66, 033807 (2002).
    [CrossRef]

2007 (2)

T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, "Polarization-controlled single photons," Phys. Rev. Lett. 98, 063601 (2007).
[CrossRef] [PubMed]

A. E. B. Nielsen and K. Mølmer, "Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator," Phys. Rev. A 75, 023806 (2007).
[CrossRef]

2006 (7)

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Quantum homodyne tomography of a two-photon fock state," Phys. Rev. Lett. 96, 213601 (2006).
[CrossRef] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, "Generation of a superposition of odd photon number states for quantum information networks," Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef] [PubMed]

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Time-bin-modulated biphotons from cavity-enhanced downconversion," Phys. Rev. Lett. 97, 223601 (2006).
[CrossRef] [PubMed]

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Deterministic single photons via conditional quantum evolution," Phys. Rev. Lett. 97, 013601 (2006).
[CrossRef] [PubMed]

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, "A high-brightness source of narrowband, identical-photon pairs," Science 313, 74-77 (2006).
[CrossRef] [PubMed]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, "Deterministic and storable single-photon source based on a quantum memory," Phys. Rev. Lett. 97, 173004 (2006).
[CrossRef] [PubMed]

J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, "Quantum teleportation between light and matter," Nature 443, 557-560 (2006).
[CrossRef] [PubMed]

2005 (3)

B. Darquie, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, "Controlled single-photon emission from a single trapped two-level atom," Science 309, 454-456 (2005).
[CrossRef] [PubMed]

T. Pittman, B. Jacobs, and J. Franson, "Heralding single photons from pulsed parametric down-conversion," Opt. Commun. 246, 545-550 (2005).
[CrossRef]

J. Fulconis, O. Alibart,W. Wadsworth, P. Russell, and J. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005).
[CrossRef] [PubMed]

2004 (7)

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef] [PubMed]

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

A. Zavatta, S. Viciani, and M. Bellini, "Tomographic reconstruction of the single-photon fock state by highfrequency homodyne detection," Phys. Rev. A 70, 053821 (2004).
[CrossRef]

H. Wang, T. Horikiri, and T. Kobayashi, "Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion," Phys. Rev. A 70, 043804 (2004).
[CrossRef]

A. I. Lvovsky, "Iterative maximum-likelihood reconstruction in quantum homodyne tomography," J. Opt. B: Quantum and Semiclassical Optics 6, S556-S559 (2004).
[CrossRef]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "Deterministic generation of single photons from one atom trapped in a cavity," Science 303, 1992-1994 (2004).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system," Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

2002 (5)

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, "Electrically driven single-photon source," Science 295, 102-105 (2002).
[CrossRef]

G. T. Foster, W. P. Smith, J. E. Reiner, and L. A. Orozco, "Time-dependent electric field fluctuations at the subphoton level," Phys. Rev. A 66, 033807 (2002).
[CrossRef]

C. Schori, J. L. Sørensen, and E. S. Polzik, "Narrow-band frequency tunable light source of continuous quadrature entanglement," Phys. Rev. A 66, 033802 (2002).
[CrossRef]

2001 (2)

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, "Quantum state reconstruction of the single-photon fock state," Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

2000 (5)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett 25, 1294-1296 (2000).
[CrossRef]

B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
[CrossRef] [PubMed]

Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62, 033804 (2000).
[CrossRef]

1995 (2)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Z. Y. Ou and H. J. Kimble, "Probability distribution of photoelectric currents in photodetection processes and its connection to the measurement of a quantum state," Phys. Rev. A 52, 3126 (1995).
[CrossRef] [PubMed]

1990 (1)

P. D. Drummond and M. D. Reid, "Correlations in nondegenerate parametric oscillation. II. Below threshold results," Phys. Rev. A 41, 3930-3949 (1990).
[CrossRef] [PubMed]

1986 (1)

C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

J. Opt. B: Quantum and Semiclassical Optics (1)

A. I. Lvovsky, "Iterative maximum-likelihood reconstruction in quantum homodyne tomography," J. Opt. B: Quantum and Semiclassical Optics 6, S556-S559 (2004).
[CrossRef]

Nature (5)

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, "Quantum teleportation between light and matter," Nature 443, 557-560 (2006).
[CrossRef] [PubMed]

B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system," Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. Pittman, B. Jacobs, and J. Franson, "Heralding single photons from pulsed parametric down-conversion," Opt. Commun. 246, 545-550 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett 25, 1294-1296 (2000).
[CrossRef]

Phys. Rev. A (8)

G. T. Foster, W. P. Smith, J. E. Reiner, and L. A. Orozco, "Time-dependent electric field fluctuations at the subphoton level," Phys. Rev. A 66, 033807 (2002).
[CrossRef]

P. D. Drummond and M. D. Reid, "Correlations in nondegenerate parametric oscillation. II. Below threshold results," Phys. Rev. A 41, 3930-3949 (1990).
[CrossRef] [PubMed]

C. Schori, J. L. Sørensen, and E. S. Polzik, "Narrow-band frequency tunable light source of continuous quadrature entanglement," Phys. Rev. A 66, 033802 (2002).
[CrossRef]

A. E. B. Nielsen and K. Mølmer, "Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator," Phys. Rev. A 75, 023806 (2007).
[CrossRef]

Z. Y. Ou and H. J. Kimble, "Probability distribution of photoelectric currents in photodetection processes and its connection to the measurement of a quantum state," Phys. Rev. A 52, 3126 (1995).
[CrossRef] [PubMed]

Y. J. Lu and Z. Y. Ou, "Optical parametric oscillator far below threshold: Experiment versus theory," Phys. Rev. A 62, 033804 (2000).
[CrossRef]

H. Wang, T. Horikiri, and T. Kobayashi, "Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion," Phys. Rev. A 70, 043804 (2004).
[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, "Tomographic reconstruction of the single-photon fock state by highfrequency homodyne detection," Phys. Rev. A 70, 053821 (2004).
[CrossRef]

Phys. Rev. Lett. (12)

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Quantum homodyne tomography of a two-photon fock state," Phys. Rev. Lett. 96, 213601 (2006).
[CrossRef] [PubMed]

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Time-bin-modulated biphotons from cavity-enhanced downconversion," Phys. Rev. Lett. 97, 223601 (2006).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, "Generation of a superposition of odd photon number states for quantum information networks," Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef] [PubMed]

T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, "Polarization-controlled single photons," Phys. Rev. Lett. 98, 063601 (2007).
[CrossRef] [PubMed]

D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Deterministic single photons via conditional quantum evolution," Phys. Rev. Lett. 97, 013601 (2006).
[CrossRef] [PubMed]

S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer, and J.-W. Pan, "Deterministic and storable single-photon source based on a quantum memory," Phys. Rev. Lett. 97, 173004 (2006).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, "Quantum state reconstruction of the single-photon fock state," Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Science (5)

B. Darquie, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, "Controlled single-photon emission from a single trapped two-level atom," Science 309, 454-456 (2005).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, "Electrically driven single-photon source," Science 295, 102-105 (2002).
[CrossRef]

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, "A high-brightness source of narrowband, identical-photon pairs," Science 313, 74-77 (2006).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "Deterministic generation of single photons from one atom trapped in a cavity," Science 303, 1992-1994 (2004).
[CrossRef] [PubMed]

Other (1)

N. B. Grosse, T. Symul, M. Stobi’nska, T. C. Ralph, and P. K. Lam, "Measuring photon anti-bunching from continuous variable sideband squeezing," quant-ph/0609033.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) Setup diagram. The second harmonic generator (SHG) pumps the optical parametric oscillator (OPO). The filter cavities should allow only a single mode (at frequency ω -) to reach the single photon counting avalanche photo diode (APD). Two acousto optic modulators (AOM) shift the main frequency to ω - and ω + - -the latter is used for the local oscillator (LO) of the homodyne measurement, the former for an alignment beam, which is used to bring all cavities resonant with ω - but which is blocked during measurement.

Fig. 2.
Fig. 2.

(Color online) Schematic illustration of the frequency mode spectrum of the OPO (blue). The pump at frequency 2ω 0 induces down-conversion into these and several other neighbouring modes. The ω - and ω + modes are correlated, and they are separated on the first filter cavity which is resonant on ω - and reflects ω + (red). Subsequent filters, of which one is depicted (orange), serves to further suppress uncorrelated modes in the trigger arm.

Fig. 3.
Fig. 3.

(Color online) a) Part of the recorded quadrature data set with corresponding phases. b) Histogram of the distribution of all 180,000 conditional quadrature points (blue) and 40,000 vacuum points (red). The superimposed curves are the theoretical vacuum state distribution, and the single photon distribution fitted to the data with the total efficiency η as the only parameter. The fitted value is η= 0.625±0.002. The dashed curve is the ideal (η = 1) single photon distribution. c) The density matrix of the state, reconstructed via a maximum likelihood method, and in d) the corresponding Wigner function.

Fig. 4.
Fig. 4.

(Color online) a) Variance of the recorded quadrature noise traces for the signal conditioned on a trigger event at t = 0 (red) and for vacuum (black). The traces have been low-pass filtered with a bandwidth of 30 MHz to suppress most of the detector output which lies outside of the field bandwidth. b) The cross correlation function, gt(s2)(t -tc) (with the trigger time tc = -29ns), calculated from the variances in a). Far away from the trigger time the value is 1, but the large values around tc demonstrate a strong correlation between the trigger and signal fields. The black curves are the theoretically expected functions for single photon state contents (versus thermal state) of 1, 0.8, and 0.6 (the lowest).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

a ̂ ± ( t ) a ̂ ± ( t ) = λ 2 μ 2 4 ( e μ t t 2 μ + e λ t t 2 λ )
a ̂ ± ( t ) a ̂ ± ( t ) = λ 2 μ 2 4 ( e μ t t 2 μ e λ t t 2 λ )
a ̂ ± ( t ) a ̂ ± ( t ) = a ̂ ± ( t ) a ̂ ( t ) = 0 ,
λ = γ 1 2 ( 1 + ε ) , μ = γ 1 2 ( 1 ε ) .
a ̂ s = f s ( t ' ) [ η s a ̂ + + 1 η s a ̂ + , vac ( t ' ) ] d t ' ,
f s . opt ( t ) = γ 1 2 e γ 1 2 t t c ,
Δ q ̂ s ( τ ) 2 cond = a ̂ t ( t c ) ( q ̂ s ( t c + τ ) ) 2 a ̂ t ( t c ) a ̂ t a ̂ t = 1 2 + a ̂ t ( t c ) a ̂ t ( t c + τ ) a ̂ s ( t c + τ ) a ̂ t ( t c ) a ̂ t a ̂ t ,
g ts ( 2 ) ( τ ) a ̂ t ( t c ) a ̂ t ( t c + τ ) a ̂ s ( t c + τ ) a ̂ t ( t c ) a ̂ t a ̂ t a ̂ s a ̂ s = Δ q ̂ s ( τ ) 2 cond 1 2 Δ q ̂ s ( τ ) 2 uncond 1 2 .

Metrics