Abstract

The cytoskeleton provides the backbone structure for the cellular organization, determining, in particular, the cellular mechanical properties. These are important factors in many biological processes, as, for instance, the metastatic process of malignant cells. In this paper, we demonstrate the possibility of monitoring the cytoskeleton structural transformations in optically trapped yeast cells (Saccharomyces cerevisiae) by tracking the forward scattered light via a quadrant photodiode. We distinguished normal cells from cells treated with latrunculin A, a drug which is known to induce the actin-cytoskeleton depolymerization. Since the proposed technique relies only on the inherent properties of the optical trap, without requiring external markers or biochemical sensitive spectroscopic techniques, it can be readily combined with existing optical tweezers setups.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Essential Cell Biology, (Garland, New York, 2002).
  2. K. M. Rao and H. J. Cohen, "Actin cytoskeleton network in aging and cancer," Mutat. Res. 256, 139-148 (1991).
    [PubMed]
  3. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
    [CrossRef] [PubMed]
  4. K. A. Ward, W. I. Li, S. Zimmer and T. Davis, "Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation," Biorheology 28, 301-313 (1991).
    [PubMed]
  5. R. M. Hochmuth, "Micropipette aspiration of living cells," J. Biomech. 33, 15-22 (2000).
    [CrossRef]
  6. I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch and D. A. Weitz, "Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks," Phys. Rev. Lett. 92, 178101-4 (2004).
    [CrossRef] [PubMed]
  7. I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, "Anomalous diffusion in living yeast cells," Phys. Rev. Lett. 93, 0781021-0781024 (2004).
    [CrossRef]
  8. G. V. Soni, B. M. J. Ali, Y. Hatwalne and G. V. Shivashankar, "Single particle tracking correlated bacterial dynamics," Biophys. J. 84, 2634-2637 (2003).
    [CrossRef] [PubMed]
  9. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, "Two.point microrheology of inhomogeneous soft material," Phys. Rev. Lett. 85, 888-891 (2000).
    [CrossRef] [PubMed]
  10. J. Sleep, D. Wilson, R. Simmons and W. Gratzer, "Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study," Biophys. J. 77, 3085-3095 (1999).
    [CrossRef] [PubMed]
  11. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5454 (2000).
    [CrossRef] [PubMed]
  12. L. P. Ghislain and W. W. Webb, "Scanning-force microscope based on an optical trap," Opt. Lett. 18, 1678-1680 (1993).
    [CrossRef] [PubMed]
  13. E. L. Florin, A. Pralle, E. H. Stelzer and J. K. H. Horber, "Photonic forcemicroscope calibration by thermal noise analysis," Appl. Phys. A 66, 71-73 (1998).
    [CrossRef]
  14. E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh and D. Chatenay, "Microreology of Biopolymer- Membrane Complexes," Phys. Rev. Lett. 85, 2457-460 (2000).
    [CrossRef] [PubMed]
  15. M. Wei, K. Yang, A. Karmenyan, and A. Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express 14, 3056-3064 (2006).
    [CrossRef] [PubMed]
  16. G. Volpe, G. P. Singh, and D. Petrov, "Dynamics of a growing cell in an optical trap," Appl. Phys. Lett. 88, 2311061-3 (2006).
    [CrossRef]
  17. M. T. Wei and A. Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798-5806 (2005).
    [CrossRef] [PubMed]
  18. M. Zhan, J. Renken, and S. Seeger, "Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers," FEBS Lett. 443 337-340 (1999).
    [CrossRef]
  19. L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova,W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87,123901-3 (2005).
    [CrossRef]
  20. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma and D. Mathur, "Torque-generating malariainfected red blood cells in an optical trapp," Opt. Express 12, 1179-1184 (2004).
    [CrossRef] [PubMed]
  21. S. K. Mohanty, K. S. Mohanty and P. K. Gupta, "Dynamics of interaction of rbc with optical tweezers," Opt. Express 13, 4745-4751 (2005).
    [CrossRef] [PubMed]
  22. K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, "High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A," J. Cell. Biol. 137, 399-416 (1997).
    [CrossRef] [PubMed]
  23. M. Cou, S. L. Brenner, I. Spector and E. D. Korn, "Inhibition of actin polymerization by latrunculin A," FEBS Lett. 213, 316-318 (1987).
    [CrossRef]
  24. S. C. Kuo, "A single assay for local heating by optical tweezers," Methods Cell Biol. 55, 43-45 (1998).
    [CrossRef]
  25. E. J. G. Peterman, F. Gittes and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308- 1316 (2003).
    [CrossRef] [PubMed]
  26. G. P. Singh, G. Volpe, C. M. Creely, H. Grotsch, I. M. Geli, and D. Petrov, "The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy," J. Raman Spectrosc. 37, 858-864 (2006).
    [CrossRef]
  27. C. F. Robinow and J. S. Hyams, in Molecular biology of the fission yeast, A. Nasim, P. Young, and B. F. Jonson, eds. (Academic Press, Inc. San Diego, 1989), pp. 273-330.
  28. T. A. Vida and S. D. Emr, "A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast," J. Cell Biol. 128, 779-792 (1995).
    [CrossRef] [PubMed]
  29. J. Achilles, H. Harms and S. Muller, "Analysis of living S. cerevisiae cell states-A three color approach," Cytometry A. 69, 173-177 (2006).
    [CrossRef]
  30. L. Sacconi, I. M. Tolic-Nørrelykke, C. Stringari, R. Antolini and F. S. Pavone, "Optical micromanipulations inside yeast cells," Appl. Opt. 44, 2001-2007 (2005).
    [CrossRef] [PubMed]
  31. K. L. Hill, N. L Catlett, and L. S. Weisman, "Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae," J. Cell Biol. 135, 1535-1549 (1996).
    [CrossRef] [PubMed]
  32. K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, "Live cell imaging of mitochondrial movement along actin cables in budding yeast," Curr. Biol. 14,1996-2004 (2004).
    [CrossRef] [PubMed]
  33. K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70, 021503 1-16 (2004).
    [CrossRef]

2006

M. Wei, K. Yang, A. Karmenyan, and A. Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express 14, 3056-3064 (2006).
[CrossRef] [PubMed]

G. Volpe, G. P. Singh, and D. Petrov, "Dynamics of a growing cell in an optical trap," Appl. Phys. Lett. 88, 2311061-3 (2006).
[CrossRef]

G. P. Singh, G. Volpe, C. M. Creely, H. Grotsch, I. M. Geli, and D. Petrov, "The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy," J. Raman Spectrosc. 37, 858-864 (2006).
[CrossRef]

J. Achilles, H. Harms and S. Muller, "Analysis of living S. cerevisiae cell states-A three color approach," Cytometry A. 69, 173-177 (2006).
[CrossRef]

2005

L. Sacconi, I. M. Tolic-Nørrelykke, C. Stringari, R. Antolini and F. S. Pavone, "Optical micromanipulations inside yeast cells," Appl. Opt. 44, 2001-2007 (2005).
[CrossRef] [PubMed]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova,W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87,123901-3 (2005).
[CrossRef]

S. K. Mohanty, K. S. Mohanty and P. K. Gupta, "Dynamics of interaction of rbc with optical tweezers," Opt. Express 13, 4745-4751 (2005).
[CrossRef] [PubMed]

M. T. Wei and A. Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798-5806 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

2004

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch and D. A. Weitz, "Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks," Phys. Rev. Lett. 92, 178101-4 (2004).
[CrossRef] [PubMed]

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, "Anomalous diffusion in living yeast cells," Phys. Rev. Lett. 93, 0781021-0781024 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma and D. Mathur, "Torque-generating malariainfected red blood cells in an optical trapp," Opt. Express 12, 1179-1184 (2004).
[CrossRef] [PubMed]

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, "Live cell imaging of mitochondrial movement along actin cables in budding yeast," Curr. Biol. 14,1996-2004 (2004).
[CrossRef] [PubMed]

2003

E. J. G. Peterman, F. Gittes and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308- 1316 (2003).
[CrossRef] [PubMed]

G. V. Soni, B. M. J. Ali, Y. Hatwalne and G. V. Shivashankar, "Single particle tracking correlated bacterial dynamics," Biophys. J. 84, 2634-2637 (2003).
[CrossRef] [PubMed]

2000

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, "Two.point microrheology of inhomogeneous soft material," Phys. Rev. Lett. 85, 888-891 (2000).
[CrossRef] [PubMed]

R. M. Hochmuth, "Micropipette aspiration of living cells," J. Biomech. 33, 15-22 (2000).
[CrossRef]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh and D. Chatenay, "Microreology of Biopolymer- Membrane Complexes," Phys. Rev. Lett. 85, 2457-460 (2000).
[CrossRef] [PubMed]

1999

M. Zhan, J. Renken, and S. Seeger, "Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers," FEBS Lett. 443 337-340 (1999).
[CrossRef]

J. Sleep, D. Wilson, R. Simmons and W. Gratzer, "Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study," Biophys. J. 77, 3085-3095 (1999).
[CrossRef] [PubMed]

1998

E. L. Florin, A. Pralle, E. H. Stelzer and J. K. H. Horber, "Photonic forcemicroscope calibration by thermal noise analysis," Appl. Phys. A 66, 71-73 (1998).
[CrossRef]

S. C. Kuo, "A single assay for local heating by optical tweezers," Methods Cell Biol. 55, 43-45 (1998).
[CrossRef]

1997

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, "High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A," J. Cell. Biol. 137, 399-416 (1997).
[CrossRef] [PubMed]

1996

K. L. Hill, N. L Catlett, and L. S. Weisman, "Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae," J. Cell Biol. 135, 1535-1549 (1996).
[CrossRef] [PubMed]

1995

T. A. Vida and S. D. Emr, "A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast," J. Cell Biol. 128, 779-792 (1995).
[CrossRef] [PubMed]

1993

1991

K. M. Rao and H. J. Cohen, "Actin cytoskeleton network in aging and cancer," Mutat. Res. 256, 139-148 (1991).
[PubMed]

K. A. Ward, W. I. Li, S. Zimmer and T. Davis, "Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation," Biorheology 28, 301-313 (1991).
[PubMed]

1987

M. Cou, S. L. Brenner, I. Spector and E. D. Korn, "Inhibition of actin polymerization by latrunculin A," FEBS Lett. 213, 316-318 (1987).
[CrossRef]

Appl. Opt.

Appl. Phys. A

E. L. Florin, A. Pralle, E. H. Stelzer and J. K. H. Horber, "Photonic forcemicroscope calibration by thermal noise analysis," Appl. Phys. A 66, 71-73 (1998).
[CrossRef]

Appl. Phys. Lett.

G. Volpe, G. P. Singh, and D. Petrov, "Dynamics of a growing cell in an optical trap," Appl. Phys. Lett. 88, 2311061-3 (2006).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova,W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87,123901-3 (2005).
[CrossRef]

Biophys. J.

E. J. G. Peterman, F. Gittes and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308- 1316 (2003).
[CrossRef] [PubMed]

J. Sleep, D. Wilson, R. Simmons and W. Gratzer, "Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study," Biophys. J. 77, 3085-3095 (1999).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

G. V. Soni, B. M. J. Ali, Y. Hatwalne and G. V. Shivashankar, "Single particle tracking correlated bacterial dynamics," Biophys. J. 84, 2634-2637 (2003).
[CrossRef] [PubMed]

Biorheology

K. A. Ward, W. I. Li, S. Zimmer and T. Davis, "Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation," Biorheology 28, 301-313 (1991).
[PubMed]

Curr. Biol.

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, "Live cell imaging of mitochondrial movement along actin cables in budding yeast," Curr. Biol. 14,1996-2004 (2004).
[CrossRef] [PubMed]

Cytometry A.

J. Achilles, H. Harms and S. Muller, "Analysis of living S. cerevisiae cell states-A three color approach," Cytometry A. 69, 173-177 (2006).
[CrossRef]

FEBS Lett.

M. Cou, S. L. Brenner, I. Spector and E. D. Korn, "Inhibition of actin polymerization by latrunculin A," FEBS Lett. 213, 316-318 (1987).
[CrossRef]

M. Zhan, J. Renken, and S. Seeger, "Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers," FEBS Lett. 443 337-340 (1999).
[CrossRef]

J. Biomech.

R. M. Hochmuth, "Micropipette aspiration of living cells," J. Biomech. 33, 15-22 (2000).
[CrossRef]

J. Cell Biol.

T. A. Vida and S. D. Emr, "A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast," J. Cell Biol. 128, 779-792 (1995).
[CrossRef] [PubMed]

K. L. Hill, N. L Catlett, and L. S. Weisman, "Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae," J. Cell Biol. 135, 1535-1549 (1996).
[CrossRef] [PubMed]

J. Cell. Biol.

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, "High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A," J. Cell. Biol. 137, 399-416 (1997).
[CrossRef] [PubMed]

J. Raman Spectrosc.

G. P. Singh, G. Volpe, C. M. Creely, H. Grotsch, I. M. Geli, and D. Petrov, "The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy," J. Raman Spectrosc. 37, 858-864 (2006).
[CrossRef]

Methods Cell Biol.

S. C. Kuo, "A single assay for local heating by optical tweezers," Methods Cell Biol. 55, 43-45 (1998).
[CrossRef]

Mutat. Res.

K. M. Rao and H. J. Cohen, "Actin cytoskeleton network in aging and cancer," Mutat. Res. 256, 139-148 (1991).
[PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5454 (2000).
[CrossRef] [PubMed]

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh and D. Chatenay, "Microreology of Biopolymer- Membrane Complexes," Phys. Rev. Lett. 85, 2457-460 (2000).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, "Two.point microrheology of inhomogeneous soft material," Phys. Rev. Lett. 85, 888-891 (2000).
[CrossRef] [PubMed]

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch and D. A. Weitz, "Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks," Phys. Rev. Lett. 92, 178101-4 (2004).
[CrossRef] [PubMed]

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, "Anomalous diffusion in living yeast cells," Phys. Rev. Lett. 93, 0781021-0781024 (2004).
[CrossRef]

Other

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

C. F. Robinow and J. S. Hyams, in Molecular biology of the fission yeast, A. Nasim, P. Young, and B. F. Jonson, eds. (Academic Press, Inc. San Diego, 1989), pp. 273-330.

K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70, 021503 1-16 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup: L, lens; M, mirror; DM, dichroic mirror; QPD, quadrant pho-todiode.

Fig. 2.
Fig. 2.

(A), yeast cell under zero-dragging condition (v = 0): the trapped organelle is in the cell center. (B), yeast cell under dragging condition (v = v 1) the whole cell is translated while the organelle remains fixed. (C),increasing the dragging force (v 2 > v 1) trapped organelle is almost in contact with the cell membrane.

Fig. 3.
Fig. 3.

The optical potential well U(x) for a healthy yeast cell. The solid line represent the best fit performed with a parabolic function.

Fig. 4.
Fig. 4.

The optical potential well for a LAT-A treated cell after a incubation time of 15 min (a) and 2 h (b).

Fig. 5.
Fig. 5.

Behavior of kxβ 2 for a LAT-A treated cell versus the observation time.

Fig. 6.
Fig. 6.

Experimental PSD from the x signal for a trapped polystyrene bead (trace a) and for a trapped normal yeast cell (trace b). The Lorentzian fitting curves are also shown.

Fig. 7.
Fig. 7.

Measured frequency corner for a living cell (a) and a LAT-A treated cell (b) during 2 hours. In the second case, the corner frequency increases with time.

Fig. 8.
Fig. 8.

Behavior of η for a LAT-A treated cell under 2 h.

Tables (1)

Tables Icon

Table 1. A comparison of the trap stiffness, corner frequency and their ratio R for different conditions of yeast cell.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U ( V x ) = 1 2 k x β 2 V x 2
< k x β 2 > = ( 2.9 ± 0.8 ) 10 13 p N m V 2
P ( f ) = k B T π 2 γ 1 ( f c 2 + f 2 )
f c = k i 2 π γ
R = k x β 2 f c x η .

Metrics