Abstract

We demonstrate electrically and mechanically induced long period gratings (LPGs) in a photonic crystal fiber (PCF) filled with a high-index liquid crystal. The presence of the liquid crystal changes the guiding properties of the fiber from an index guiding fiber to a photonic bandgap guiding fiber - a so called liquid crystal photonic bandgap (LCPBG) fiber. Both the strength and resonance wavelength of the gratings are highly tunable. By adjusting the amplitude of the applied electric field, the grating strength can be tuned and by changing the temperature, the resonance wavelength can be tuned as well. Numerical calculations of the higher order modes of the fiber cladding are presented, allowing the resonance wavelengths to be calculated. A high polarization dependent loss of the induced gratings is also observed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler and A. Hale, "Microstructured Optical Fiber Devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  2. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
    [CrossRef] [PubMed]
  3. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton and D. J. Trevor, "Tunable photonic band gap fiber," Optical Fiber Communication Conference, 466-468 (2002).
  4. T. T. Larsen, A. Bjarklev, D. S. Hermann and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  5. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005)
    [CrossRef]
  6. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
    [CrossRef] [PubMed]
  7. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
    [CrossRef] [PubMed]
  8. T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
    [CrossRef]
  9. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski- Kruszelnicki and J.Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
    [CrossRef]
  10. P. Lesiak, T. R. Wolinski, K. Brzdakiewicz, K. Nowecka, S. Ertman, M. Karpierz, A. W. Domanski and R. Dabrowski, "Temperature tuning of polarization mode dispersion in single-core and two-core photonic liquid crystal fibers," Opto-Electron. Rev. 15, 27-31 (2007).
    [CrossRef]
  11. D. C. Zografopoulos, E. E. Kriezis and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquidcrystal microstructured fibers," J. Lightwave Technol. 24, 3427-3432 (2006).
    [CrossRef]
  12. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  13. A. M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  14. A. M. Vengsarker, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano and C. R. Davidson, "Long-period fiber-grating-based gain equalizers," Opt. Lett. 21, 336-338 (1996).
    [CrossRef]
  15. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni and A. M. Vengsarkar, "Optical fiber-based dispersion compensation using higher order modes near cutoff," J. Lightwave Technol. 12, 1746-1758 (1994).
    [CrossRef]
  16. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  17. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
    [CrossRef] [PubMed]
  18. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Sp¨alter and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  19. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan and P. St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25, 1499-1501 (2000).
    [CrossRef]
  20. M. D. Nielsen, G. Vienne, J. R. Folkenberg and A. Bjarklev, "Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber," Opt. Lett. 28, 236-238 (2003).
    [CrossRef] [PubMed]
  21. J. Kim, G.-J. Kong, U.-C. Paek, K. S. Lee and B. H. Lee, "Demonstration of an ultra-wide wavelength tunable band rejection filter implemented with photonic crystal fiber," IEICE Trans. Electron. E 88-C, 920-924 (2005).
    [CrossRef]
  22. P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
    [CrossRef] [PubMed]
  23. P. Steinvurzel, E. D. Moore, E. C. Magi and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
    [CrossRef] [PubMed]
  24. Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi and K. Oh, "Electrically controllable long-period liquid crystal fiber gratings," IEEE Photon. Technol. Lett. 12, 519-521 (2000).
    [CrossRef]
  25. Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee and B. Lee, "Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding," Opt. Eng.  42, 964-968 (2003).
    [CrossRef]
  26. H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee and S. D. Lee, "Suppression of the cladding mode interference in cascaded long period fiber gratings with liquid crystal claddings," Mol. Cryst. Liq. Cryst.,  413, 399-406 (2004).
    [CrossRef]
  27. COMSOL Multiphysics™, http://www.comsol.com>.
  28. J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
    [CrossRef]

2007

P. Lesiak, T. R. Wolinski, K. Brzdakiewicz, K. Nowecka, S. Ertman, M. Karpierz, A. W. Domanski and R. Dabrowski, "Temperature tuning of polarization mode dispersion in single-core and two-core photonic liquid crystal fibers," Opto-Electron. Rev. 15, 27-31 (2007).
[CrossRef]

2006

D. C. Zografopoulos, E. E. Kriezis and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquidcrystal microstructured fibers," J. Lightwave Technol. 24, 3427-3432 (2006).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski- Kruszelnicki and J.Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Magi and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
[CrossRef] [PubMed]

2005

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

J. Kim, G.-J. Kong, U.-C. Paek, K. S. Lee and B. H. Lee, "Demonstration of an ultra-wide wavelength tunable band rejection filter implemented with photonic crystal fiber," IEICE Trans. Electron. E 88-C, 920-924 (2005).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005)
[CrossRef]

2004

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee and S. D. Lee, "Suppression of the cladding mode interference in cascaded long period fiber gratings with liquid crystal claddings," Mol. Cryst. Liq. Cryst.,  413, 399-406 (2004).
[CrossRef]

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
[CrossRef] [PubMed]

2003

2001

2000

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan and P. St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25, 1499-1501 (2000).
[CrossRef]

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi and K. Oh, "Electrically controllable long-period liquid crystal fiber gratings," IEEE Photon. Technol. Lett. 12, 519-521 (2000).
[CrossRef]

1999

1997

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1996

1994

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni and A. M. Vengsarkar, "Optical fiber-based dispersion compensation using higher order modes near cutoff," J. Lightwave Technol. 12, 1746-1758 (1994).
[CrossRef]

E

J. Kim, G.-J. Kong, U.-C. Paek, K. S. Lee and B. H. Lee, "Demonstration of an ultra-wide wavelength tunable band rejection filter implemented with photonic crystal fiber," IEICE Trans. Electron. E 88-C, 920-924 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi and K. Oh, "Electrically controllable long-period liquid crystal fiber gratings," IEEE Photon. Technol. Lett. 12, 519-521 (2000).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005)
[CrossRef]

J. Applied Physics

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

J. Lightwave Technol.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni and A. M. Vengsarkar, "Optical fiber-based dispersion compensation using higher order modes near cutoff," J. Lightwave Technol. 12, 1746-1758 (1994).
[CrossRef]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

J. Lightwave Techol.

D. C. Zografopoulos, E. E. Kriezis and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquidcrystal microstructured fibers," J. Lightwave Technol. 24, 3427-3432 (2006).
[CrossRef]

Meas. Sci. Technol.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski- Kruszelnicki and J.Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst.

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee and S. D. Lee, "Suppression of the cladding mode interference in cascaded long period fiber gratings with liquid crystal claddings," Mol. Cryst. Liq. Cryst.,  413, 399-406 (2004).
[CrossRef]

Opt. Eng.

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee and B. Lee, "Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding," Opt. Eng.  42, 964-968 (2003).
[CrossRef]

Opt. Express

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
[CrossRef] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler and A. Hale, "Microstructured Optical Fiber Devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Opto-Electronics Review

P. Lesiak, T. R. Wolinski, K. Brzdakiewicz, K. Nowecka, S. Ertman, M. Karpierz, A. W. Domanski and R. Dabrowski, "Temperature tuning of polarization mode dispersion in single-core and two-core photonic liquid crystal fibers," Opto-Electron. Rev. 15, 27-31 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Other

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton and D. J. Trevor, "Tunable photonic band gap fiber," Optical Fiber Communication Conference, 466-468 (2002).

COMSOL Multiphysics™, http://www.comsol.com>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) SEM image of PCF end facet. (b) Schematic illustration of LCPBG fiber placed underneath the grating used to induce LPGs. The drawing is out of scale. (c) Setup used to measure the transmission of the induced LPGs in the LCPBG fibers.

Fig. 2.
Fig. 2.

(a) Transmission spectrum of mechanically induced LPGs in the E7 filled 7 ring LMA-10 fiber. The transmission is measured for an increasing pressure applied to the fiber, where the blue curve is without applied pressure. The grating pitch is Λ G = 800 μm and the transmission is measured at a temperature of 25°C. (b) Simulated effective indices of the modes in the liquid crystal rods (blue lines) and the core guided mode (black line).

Fig. 3.
Fig. 3.

Illustration of a single capillary tube filled with a planar aligned liquid crystal, sandwiched between a comb electrode. In (a) the field is turned off, and in (b) an electric field is applied to the capillary tube.

Fig. 4.
Fig. 4.

Transmission spectrum of electrically tunable LPGs in the E7 filled 7 ring LMA-10 fiber. The grating pitch is Λ G = 800 μm. The grating dips are tuned by varying the strength of the electric field at a constant temperature of 25°C. The figure also shows the numerically simulated phase matching curves between the fundamental and the LP11 (dashed red lines) and LP12 (dashed green lines) like cladding modes. The simulated resonances are shifted 60 nm in order to match the experimental measurements.

Fig. 5.
Fig. 5.

Transverse mode profiles of H y polarized modes at λ = 1450 nm. (a) LP01 core mode. Blue : H y =0, dark red : H y 0. (b) LP11 cladding mode. Blue : H y 0, dark red : H y 0. (c) LP12 cladding mode. Blue : H y 0, dark red : H y 0.

Fig. 6.
Fig. 6.

Temperature tuning of electrically tunable LPGs in the E7 filled 7 ring LMA-10 fiber. The grating pitch is Λ G = 800 μm, and an electric field of V RMS =63.6 V is applied. In (a) the transmission spectrum of the induced grating at a temperature of 25°C, 40°C and 58°C is shown, and (b) shows the temperature dependence of the resonance wavelength. The tuning of the resonance wavelength is measured on the large spectral dip that is the coupling of the core mode to the LP11 cladding mode. From 55°C to 59°C the resonance wavelength is tuned 11 nm/°C. Inset, the ordinary and extraordinary refractive indices as a function of temperature of the liquid crystal E7 at a wavelength of 589 nm.

Fig. 7.
Fig. 7.

Temperature tuning of LPG in MDA-00-3969 filled LCPBG fiber. The tuning is done for a mechanically induced LPG, with a grating pitch of Λ G = 800 μm. (a) Transmission spectrum of the loss peak induced by the grating at temperatures from 30°C to 70°C. (b) Plot of the resonance wavelength as a function of temperature. The resonance peak moves -2.4 nm/°C. Inset, the ordinary and extraordinary refractive indices as a function of temperature of the liquid crystal MDA-00-3969 at a wavelength of 450 nm.

Fig. 8.
Fig. 8.

Setup used to measure the polarization dependence of the induced LPGs in the LCPBG fibers.

Fig. 9.
Fig. 9.

Investigation of the polarization dependence of the induced LPG in the E7 filled 7 ring LMA-10 PCF. The blue curve shows the transmission of the fiber when no grating is present in the fiber. The red and green curve show the transmission spectrum of the induced LPG with a grating pitch of Λ G = 800 μm, when the polarization is tuned to give the lowest and the highest transmission loss, respectively. The temperature is T=30°C. In (a) the electrically induced LPG can be seen at an applied voltage of VRMS = 68.9 V and (b) shows the mechanical grating.

Tables (1)

Tables Icon

Table 1. Cauchy coefficients used in the simulations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ res = Λ G ( n eff , core n eff , HOM ) ,
n e = A e + B e λ 2 + C e λ 4
n o = A o + B o λ 2 + C o λ 4 ,

Metrics