Abstract

A new scheme for quasi-phasematching high harmonic generation (HHG) in gases is proposed. In this, the rapid variation of the axial intensity resulting from excitation of more than one mode of a waveguide is used to achieve quasi phasematching. Numerical modeling demonstrates enhancement of the harmonic signal over that achieved for a single coherence length by factors >104.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. L’Huillier, P. Balcou, and L. Lompre, "Coherence and resonance effects in High-Order Harmonic Generation," Phys. Rev. Lett. 68, 166-169 (1992). P. B. Corkum "Plasma perspective on strong field multiphoton ionization,"Phys. Rev. Lett. 71, 1994 (1993).
    [CrossRef] [PubMed]
  2. J. Seres,  et al., "Generation of coherent keV x-rays with intensefemtosecond laser pulses" NJP 8, 251 (2006).
    [CrossRef]
  3. X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré and G. Mainfray, "Multiple-harmonic generation in rare gases at high laser intensity," Phys. Rev. A 39, 5751 (1989).
    [CrossRef] [PubMed]
  4. C. Durfee, A. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, "Phase matching of High-Order Harmonics in Hollow Waveguides," Phys. Rev. Lett. 83, 2187-2190 (1999).
    [CrossRef]
  5. A. Paul,  et al., "Quasi-phase-matched generation of coherent extreme ultraviolet light," Nature 42, 51-54, (2003).
    [CrossRef]
  6. I. P. Christov, H. C. Kapteyn, and M. M. Murnane, "Dispersion-controlled hollow core fiber for Phase Matched Harmonic Generation" Opt. Express 3, 360 (1998).
    [CrossRef] [PubMed]
  7. S. Voronov "Control of Laser High-Harmonic Generation with Counterpropagating Light," Phys. Rev. Lett. 87, 133902 (2001).
    [CrossRef] [PubMed]
  8. E. A. Gibson,  et al. "Coherent soft x-ray generation in the water window with quasi-phase matching," Science 302, 95-98 (2003).
    [CrossRef] [PubMed]
  9. R. L. Abrams, "Coupling losses in hollow waveguide fiber resonators, "IEEE J. Quantum Electron. 8, 838 (1972).
    [CrossRef]
  10. C. Courtois, A. Couairon, B. Cros, J. R. Marques and G. Matthieussent, "Propagation of in tense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments," Phys. Plasmas 8, 3445 (2001).
    [CrossRef]
  11. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783 (1964).
  12. B. Cros,  et al. "Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding," Phys. Rev. E 65, 026405 (2002).
    [CrossRef]
  13. M. Ammosov, N. Delone, and V. Krainov, "Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field," Sov. Phys. JETP 64, 1191 (1986).
  14. M. Zepf and B. Dromey, Queens University Belfast, are preparing a manuscript to be called "Bright quasi-phase matched soft x-ray harmonic radiation from Argon ions," (Feb 2007) - pre-submission access http://arxiv.org/abs/physics/0702117>
  15. T. Pfeifer,  et al., "Spatial control of high-harmonic generation inhollow fibers," Opt. Lett. 30, 1497 (2005).
    [CrossRef] [PubMed]
  16. D. Walter,  et al, "Adaptive spatial control of fiber modes and their excitation for high-harmonic generation" Opt. Exp. 14, 3433 (2006).
    [CrossRef]

2006

J. Seres,  et al., "Generation of coherent keV x-rays with intensefemtosecond laser pulses" NJP 8, 251 (2006).
[CrossRef]

D. Walter,  et al, "Adaptive spatial control of fiber modes and their excitation for high-harmonic generation" Opt. Exp. 14, 3433 (2006).
[CrossRef]

2005

2003

A. Paul,  et al., "Quasi-phase-matched generation of coherent extreme ultraviolet light," Nature 42, 51-54, (2003).
[CrossRef]

E. A. Gibson,  et al. "Coherent soft x-ray generation in the water window with quasi-phase matching," Science 302, 95-98 (2003).
[CrossRef] [PubMed]

2002

B. Cros,  et al. "Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding," Phys. Rev. E 65, 026405 (2002).
[CrossRef]

2001

S. Voronov "Control of Laser High-Harmonic Generation with Counterpropagating Light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

C. Courtois, A. Couairon, B. Cros, J. R. Marques and G. Matthieussent, "Propagation of in tense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments," Phys. Plasmas 8, 3445 (2001).
[CrossRef]

1999

C. Durfee, A. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, "Phase matching of High-Order Harmonics in Hollow Waveguides," Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

1998

1993

A. L’Huillier, P. Balcou, and L. Lompre, "Coherence and resonance effects in High-Order Harmonic Generation," Phys. Rev. Lett. 68, 166-169 (1992). P. B. Corkum "Plasma perspective on strong field multiphoton ionization,"Phys. Rev. Lett. 71, 1994 (1993).
[CrossRef] [PubMed]

1989

X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré and G. Mainfray, "Multiple-harmonic generation in rare gases at high laser intensity," Phys. Rev. A 39, 5751 (1989).
[CrossRef] [PubMed]

1986

M. Ammosov, N. Delone, and V. Krainov, "Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field," Sov. Phys. JETP 64, 1191 (1986).

1972

R. L. Abrams, "Coupling losses in hollow waveguide fiber resonators, "IEEE J. Quantum Electron. 8, 838 (1972).
[CrossRef]

1964

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783 (1964).

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783 (1964).

IEEE J. Quantum Electron.

R. L. Abrams, "Coupling losses in hollow waveguide fiber resonators, "IEEE J. Quantum Electron. 8, 838 (1972).
[CrossRef]

Nature

A. Paul,  et al., "Quasi-phase-matched generation of coherent extreme ultraviolet light," Nature 42, 51-54, (2003).
[CrossRef]

NJP

J. Seres,  et al., "Generation of coherent keV x-rays with intensefemtosecond laser pulses" NJP 8, 251 (2006).
[CrossRef]

Opt. Exp.

D. Walter,  et al, "Adaptive spatial control of fiber modes and their excitation for high-harmonic generation" Opt. Exp. 14, 3433 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Plasmas

C. Courtois, A. Couairon, B. Cros, J. R. Marques and G. Matthieussent, "Propagation of in tense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments," Phys. Plasmas 8, 3445 (2001).
[CrossRef]

Phys. Rev. A

X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré and G. Mainfray, "Multiple-harmonic generation in rare gases at high laser intensity," Phys. Rev. A 39, 5751 (1989).
[CrossRef] [PubMed]

Phys. Rev. E

B. Cros,  et al. "Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding," Phys. Rev. E 65, 026405 (2002).
[CrossRef]

Phys. Rev. Lett.

S. Voronov "Control of Laser High-Harmonic Generation with Counterpropagating Light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

C. Durfee, A. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, "Phase matching of High-Order Harmonics in Hollow Waveguides," Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

A. L’Huillier, P. Balcou, and L. Lompre, "Coherence and resonance effects in High-Order Harmonic Generation," Phys. Rev. Lett. 68, 166-169 (1992). P. B. Corkum "Plasma perspective on strong field multiphoton ionization,"Phys. Rev. Lett. 71, 1994 (1993).
[CrossRef] [PubMed]

Science

E. A. Gibson,  et al. "Coherent soft x-ray generation in the water window with quasi-phase matching," Science 302, 95-98 (2003).
[CrossRef] [PubMed]

Sov. Phys. JETP

M. Ammosov, N. Delone, and V. Krainov, "Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field," Sov. Phys. JETP 64, 1191 (1986).

Other

M. Zepf and B. Dromey, Queens University Belfast, are preparing a manuscript to be called "Bright quasi-phase matched soft x-ray harmonic radiation from Argon ions," (Feb 2007) - pre-submission access http://arxiv.org/abs/physics/0702117>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Idealised multimode beating assuming two equal intensity modes (j=1 and j=20) excited in a capillary with a~90μm. Figure 1(a) shows the axial intensity as a function of z, I(z), normalised at z=0, over the first 0.2 cm of the capillary while Fig. 1(b) shows corresponding harmonic source term (assumed proportional to the ADK rate for tunnel ionisation [13]).

Fig. 2.
Fig. 2.

Normalised Intensity profiles for coupling to an evacuated capillary with a=90μm. The coupling coefficient for the Gaussian (solid line) and the central maximum of the Airy profile (dashed line) are χ=0.64 and χ=0.2 respectively.

Fig. 3.
Fig. 3.

Multimode quasi phase matching. Calculated axial intensity as a function of distance z into a capillary of radius 90μm for beams with the Gaussian (a) and Airy (b) incident transverse profiles shown in Fig. 2. The corresponding calculated harmonic source terms (normalised at peak intensity) are shown in Figs. 3(c) and 3(d). The resulting harmonic growth for q=201 (solid lines), normalised to the signal expected for one coherence length (dot-dashed line), is shown in Figs. 3(e) and 3(f). The dotted line in both 3(e) and 3(f) corresponds to the expected harmonic growth for the two mode axial intensity profile given in Fig. 1(a), while the dashed line is the signal expected for perfect phase matching. Harmonic growth is calculated using a 1-D code under optimal matching conditions for the normalised harmonic source terms given in Figs. 3(c) and 3(d). Optimal matching conditions were achieved in each case by varying intensity at z=0 and pressure (approx. 20mbar Ar) slightly to adjust Z * such that 2Lc LB over extended interaction regions. It should be noted that the rapid growth of HHG over the first few mm of the capillary for the intensity profiles in Figs. 3(c) and 3(d) in comparison to that for the idealised MMQPM scheme from Fig. 2 is due to the constructive interference of multiple modes leading to increased on-axis intensity and hence greater HHG signal.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L c = π Δ k , Δ k = k q qk 0
Δ k Δ k e + Δ k g
L = 2 m L c
Δ K = mK Δ k 0 where K = 2 π L
E L ( r ) = j = 1 C j E 1 , j ( r )
A ( r ) = j = 1 J 0 ( r a . U 0 , j ) C j 2
χ = w 0 a = 0.64
I ( z ) = j = 1 C j E 1, j e i ( Δ k j z ) L z , j 2

Metrics