Abstract

We present a novel refractometric sensor based on a coated all-coupling optical-fiber-nanowire microcoil resonator which is robust, compact, and comprises an intrinsic fluidic channel. We calculate the device sensitivity and find its dependence on the nanowire diameter and coating thickness. A sensitivity as high as 700 nm/RIU and a refractive index resolution as low as 10-10 are predicted.

© 2007 Optical Society of America

Full Article  |  PDF Article

Corrections

Fei Xu, Peter Horak, and Gilberto Brambilla, "Optical microfiber coil resonator refractometric sensor: erratum," Opt. Express 15, 9385-9385 (2007)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-15-15-9385

References

  • View by:
  • |
  • |
  • |

  1. N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
    [CrossRef]
  2. M. Adams, G. A. DeRose, M. Lončar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
    [CrossRef]
  3. C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).Q1
    [CrossRef]
  4. I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
    [CrossRef]
  5. I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
    [CrossRef]
  6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  7. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004).
    [CrossRef] [PubMed]
  8. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004).
    [CrossRef] [PubMed]
  9. M. Sumetsky, "Optical fiber microcoil resonators," Opt. Express 12, 2303-2316 (2004).
    [CrossRef] [PubMed]
  10. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightwave Technol. 24, 242-250 (2006).
    [CrossRef]
  11. F. Xu and G. Brambilla, "Embedding Optical Microfiber Coil Resonators in Teflon," Opt. Lett. (in press).
    [PubMed]
  12. M. Sumetsky, Y. Dulashko, and M. Fishteyn, "Demonstration of a multi-turn microfiber coil resonator," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2007), postdeadline paper PDP46.
  13. F. Xu, P. Horak, and G. Brambilla, "Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator," Appl. Opt. 46, 570-573 (2007).
    [CrossRef] [PubMed]
  14. F. Xu, P. Horak, and G. Brambilla, "Optimized Design of Microcoil Resonators," J. Lightwave Technol. (in press).
  15. D. Marcuse, F. Ladouceur, and J. D. Love, "Vector modes of D-shaped fibers," IEE Proc. J. 139, 117-126 (1992).
  16. M. S. Dinleyici and D. B. Patterson, "Vector modal solution of evanescent coupler," J. Lightwave Technol. 15, 2316-2324 (1997).
    [CrossRef]
  17. C. Y. Chao and L. J. Guo, "Design and Optimization of Microring Resonators in Biochemical Sensing Applications," J. Lightwave Technol. 24, 1395-1402 (2006).
    [CrossRef]
  18. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
    [CrossRef]
  19. O. Esteban, N. Díaz-Herrera, M.-C. Navarrete, and A. González-Cano, "Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration," Appl. Opt. 45, 7294-7298 (2006).
  20. G. M. Hale and M. R. Querry, "Optical Constants of Water in the 200nm to 200m Wavelength Region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  21. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett.  85, 74-77 (2000).
    [CrossRef] [PubMed]
  22. P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3
    [CrossRef]
  23. R. Altkorn, I. Koev, R. P. Duyne, and M. Litorja, "Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy," Appl. Opt. 36, 8992-8998 (1997).
    [CrossRef]
  24. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-2742003)
    [CrossRef] [PubMed]
  25. I. Teraoka, S. Arnold, and F. Vollmer, "Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium," J. Opt. Soc. Am. B 20, 1937-1946 (2003).
    [CrossRef]
  26. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, "Microfluidic sensor based on integrated optical hollow waveguides," Opt. Lett. 29, 1894-1896 (2004).
    [CrossRef] [PubMed]
  27. G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical. characterisation," Electron. Lett. 42, 517-519 (2006).
    [CrossRef]
  28. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
    [CrossRef]
  29. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
    [CrossRef]
  30. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006).
    [CrossRef] [PubMed]
  31. A. M. Armani and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).
    [CrossRef] [PubMed]
  32. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996).
    [CrossRef] [PubMed]
  33. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998).
    [CrossRef]
  34. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  35. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
    [CrossRef] [PubMed]
  36. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
    [CrossRef]

2007 (2)

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, "Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator," Appl. Opt. 46, 570-573 (2007).
[CrossRef] [PubMed]

2006 (8)

C. Y. Chao and L. J. Guo, "Design and Optimization of Microring Resonators in Biochemical Sensing Applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

O. Esteban, N. Díaz-Herrera, M.-C. Navarrete, and A. González-Cano, "Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration," Appl. Opt. 45, 7294-7298 (2006).

I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).Q1
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightwave Technol. 24, 242-250 (2006).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical. characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).
[CrossRef] [PubMed]

2005 (4)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

M. Adams, G. A. DeRose, M. Lončar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

2004 (4)

2003 (7)

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-2742003)
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, "Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium," J. Opt. Soc. Am. B 20, 1937-1946 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett.  85, 74-77 (2000).
[CrossRef] [PubMed]

1998 (2)

P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3
[CrossRef]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998).
[CrossRef]

1997 (2)

1996 (1)

1992 (1)

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector modes of D-shaped fibers," IEE Proc. J. 139, 117-126 (1992).

1973 (1)

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

Adams, M.

M. Adams, G. A. DeRose, M. Lončar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Altkorn, R.

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Arnold, S.

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Baets, R.

Belz, M.

P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3
[CrossRef]

Bernini, R.

Bienstman, P.

Birks, T. A.

Brambilla, G.

F. Xu, P. Horak, and G. Brambilla, "Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator," Appl. Opt. 46, 570-573 (2007).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical. characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004).
[CrossRef] [PubMed]

F. Xu and G. Brambilla, "Embedding Optical Microfiber Coil Resonators in Teflon," Opt. Lett. (in press).
[PubMed]

F. Xu, P. Horak, and G. Brambilla, "Optimized Design of Microcoil Resonators," J. Lightwave Technol. (in press).

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett.  85, 74-77 (2000).
[CrossRef] [PubMed]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

Campopiano, S.

Chao, C. Y.

C. Y. Chao and L. J. Guo, "Design and Optimization of Microring Resonators in Biochemical Sensing Applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).Q1
[CrossRef]

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Debackere, P.

DeRose, G. A.

M. Adams, G. A. DeRose, M. Lončar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Díaz-Herrera, N.

DiGiovanni, D. J.

Dinleyici, M. S.

M. S. Dinleyici and D. B. Patterson, "Vector modal solution of evanescent coupler," J. Lightwave Technol. 15, 2316-2324 (1997).
[CrossRef]

Domínguez, C.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
[CrossRef]

Dress, P.

P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3
[CrossRef]

Dulashko, Y.

Duyne, R. P.

Esteban, O.

Fan, X.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

Feng, X.

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical. characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

Finazzi, V.

Fini, J. M.

Franke, H.

P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3
[CrossRef]

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).Q1
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

González-Cano, A.

Gorodetsky, M. L.

Grattan, K.

P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3
[CrossRef]

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).Q1
[CrossRef]

C. Y. Chao and L. J. Guo, "Design and Optimization of Microring Resonators in Biochemical Sensing Applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

Hale, A.

Hale, G. M.

Hanumegowda, N. M.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Holler, S.

Horak, P.

F. Xu, P. Horak, and G. Brambilla, "Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator," Appl. Opt. 46, 570-573 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, "Optimized Design of Microcoil Resonators," J. Lightwave Technol. (in press).

Ilchenko, V. S.

Khoshsima, M.

Kimble, H. J.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Klein, K.

P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3
[CrossRef]

Koev, I.

Ladouceur, F.

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector modes of D-shaped fibers," IEE Proc. J. 139, 117-126 (1992).

Lechuga, L. M.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Leon-Saval, S. G.

Litorja, M.

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
[CrossRef]

Loncar, M.

M. Adams, G. A. DeRose, M. Lončar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Love, J. D.

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector modes of D-shaped fibers," IEE Proc. J. 139, 117-126 (1992).

Mabuchi, H.

Marcuse, D.

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector modes of D-shaped fibers," IEE Proc. J. 139, 117-126 (1992).

Mason, M. W.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

Navarrete, M.-C.

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Oveys, H.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett.  85, 74-77 (2000).
[CrossRef] [PubMed]

Patel, B. C.

N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

Patterson, D. B.

M. S. Dinleyici and D. B. Patterson, "Vector modal solution of evanescent coupler," J. Lightwave Technol. 15, 2316-2324 (1997).
[CrossRef]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
[CrossRef]

Querry, M. R.

Richardson, D. J.

Russell, P. St. J.

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Sarro, P. M.

Savchenkov, A. A.

Scheerlinck, S.

Scherer, A.

M. Adams, G. A. DeRose, M. Lončar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Smith, T. L.

I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Stica, C. J.

N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

Streed, E. W.

Sumetsky, M.

Suter, J.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Teraoka, I.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett.  85, 74-77 (2000).
[CrossRef] [PubMed]

Vernooy, D. W.

Vollmer, F.

Wadsworth, W. J.

White, I. M.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

Xu, F.

F. Xu, P. Horak, and G. Brambilla, "Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator," Appl. Opt. 46, 570-573 (2007).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical. characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

F. Xu and G. Brambilla, "Embedding Optical Microfiber Coil Resonators in Teflon," Opt. Lett. (in press).
[PubMed]

F. Xu, P. Horak, and G. Brambilla, "Optimized Design of Microcoil Resonators," J. Lightwave Technol. (in press).

Zeni, L.

Zhang, J.

I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Zhu, H.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Zourob, M.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005).
[CrossRef]

I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006).
[CrossRef]

Electron. Lett. (1)

G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical. characterisation," Electron. Lett. 42, 517-519 (2006).
[CrossRef]

IEE Proc. J. (1)

D. Marcuse, F. Ladouceur, and J. D. Love, "Vector modes of D-shaped fibers," IEE Proc. J. 139, 117-126 (1992).

IEEE J. Sel. Top. Quantum Electron. (1)

C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).Q1
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

IEEE Sens. J. (1)

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

M. Adams, G. A. DeRose, M. Lončar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005).
[CrossRef]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003).
[CrossRef]

Nature (3)

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Nature Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett.  85, 74-77 (2000).
[CrossRef] [PubMed]

Sens. Actuators B (2)

P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003).
[CrossRef]

Other (1)

M. Sumetsky, Y. Dulashko, and M. Fishteyn, "Demonstration of a multi-turn microfiber coil resonator," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2007), postdeadline paper PDP46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the CANMR.

Fig. 2.
Fig. 2.

Dependence of the effective index of a coated nanowire neff on the index of the analyte na for nt =1.311, nc =1.451, r=500 nm, d=10 nm (solid line), 100 nm (dashed), and 500 nm (dotted). The wavelength of the propagating mode is (a) λ=600 nm, (b) λ=970 nm.

Fig. 3.
Fig. 3.

Sensitivity of the CANMR versus nanowire radius for (a) λ=600 nm and (b) λ=970 nm and for different values of d. Here, na =1.332, nt = 1.311, and nc =1.451.

Tables (1)

Tables Icon

Table 1. Summary of sensitivity and FWHM for evanescent field refractometric sensors.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T = exp ( iβL αL ) i sin K exp ( iβL + αL ) + i sin K .
K m = arcsin γ + 2
β n = ( 2 n + 1 ) π 2 L
S = λ 0 n a = λ 0 n eff n eff n a = λ 0 n eff n eff n a
FWHM = λ 0 2 πn eff L π 2 arcsin [ ( γ 2 + γ 2 ) 2 ( γ 2 + γ 2 ) 2 ] λ 0 2 π n eff L ( γ 2 + γ 2 ) 2 ( γ 2 + γ 2 ) 1 2 λ 0 2 α π n eff
FWHM α + ( K K m ) 2

Metrics