Abstract

We demonstrate non-degenerate down-conversion at 810 and 1550 nm for long-distance fiber based quantum communication using polarization entangled photon pairs. Measurements of the two-photon visibility, without dark count subtraction, have shown that the quantum correlations (raw visibility 89%) allow secure quantum cryptography after 100 km of non-zero dispersion shifted fiber using commercially available single photon detectors. In addition, quantum state tomography has revealed little degradation of state negativity, decreasing from 0.99 at the source to 0.93 after 100 km, indicating minimal loss in fidelity during the transmission.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dusek, N. Lutkenhaus, and M. Hendrych, “Quantum Cryptography,” Progress in Optics 49, 381–454 (2006).
  2. C.H. Bennett, G. Brassard, and N.D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
    [Crossref] [PubMed]
  3. H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  4. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.
  5. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004).
    [Crossref] [PubMed]
  6. H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express 14, 3453–3460 (2006).
    [Crossref] [PubMed]
  7. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.
  8. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, “Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks,” Opt. Express 15, 6926–6933 (2007).
    [Crossref] [PubMed]
  9. D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
    [Crossref] [PubMed]
  10. A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
    [Crossref] [PubMed]
  11. G. Ribordy, J. Brendel, J.D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A. 63, 012309 (2000).
    [Crossref]
  12. M. Pelton, P. Marsden, D. Ljunggren, M. Tenger, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using perioically pole KTP,” Opt. Express 12, 3573–3580 (2004).
    [Crossref] [PubMed]
  13. F. Konig, E.J. Mason, F.N.C. Wong, and M.A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A. 71, 033805 (2005).
    [Crossref]
  14. P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A. 60, R773-6 (1999).
    [Crossref]
  15. D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of narrow-band photon pairs into single-mode fibers,” Phys. Rev. A. 72, 062301 (2005).
    [Crossref]
  16. D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A. 73, 032326 (2006).
    [Crossref]
  17. J. N. Damask, Polarization Optics in Telecommunications (Springer2005).
  18. D.F.V. James, P.G. Kwiat, W.J. Munro, and A.G. White, “Measurement of qubits,” Phys. Rev. A. 64, 052312 (2001).
    [Crossref]
  19. Z. Hradil, “Quantum-state estimation,” Phys. Rev. A. 55, R1561–R1564 (1997).
    [Crossref]
  20. G. Vidal and R.F. Werner,“Computable measure of entanglement,” Phys. Rev. A. 65, 032314 (2002).
    [Crossref]
  21. P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409, 1014–1017 (2001).
    [Crossref] [PubMed]
  22. E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A. 65, 052310 (2002).
    [Crossref]
  23. G. Brassard and L. Salvail, “Secret key reconciliation by public discussion,” Lecture Notes in Computer Science 765, 410423 (1994).
    [Crossref]
  24. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
    [Crossref]
  25. C. Liang, K. F. Lee, M. Medic, and P. Kumar, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 12, 3573–3580 (2004).

2007 (1)

2006 (5)

D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
[Crossref] [PubMed]

M. Dusek, N. Lutkenhaus, and M. Hendrych, “Quantum Cryptography,” Progress in Optics 49, 381–454 (2006).

H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express 14, 3453–3460 (2006).
[Crossref] [PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.

D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A. 73, 032326 (2006).
[Crossref]

2005 (3)

J. N. Damask, Polarization Optics in Telecommunications (Springer2005).

F. Konig, E.J. Mason, F.N.C. Wong, and M.A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A. 71, 033805 (2005).
[Crossref]

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of narrow-band photon pairs into single-mode fibers,” Phys. Rev. A. 72, 062301 (2005).
[Crossref]

2004 (4)

2002 (2)

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A. 65, 052310 (2002).
[Crossref]

G. Vidal and R.F. Werner,“Computable measure of entanglement,” Phys. Rev. A. 65, 032314 (2002).
[Crossref]

2001 (2)

P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409, 1014–1017 (2001).
[Crossref] [PubMed]

D.F.V. James, P.G. Kwiat, W.J. Munro, and A.G. White, “Measurement of qubits,” Phys. Rev. A. 64, 052312 (2001).
[Crossref]

2000 (2)

G. Ribordy, J. Brendel, J.D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A. 63, 012309 (2000).
[Crossref]

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

1999 (1)

P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A. 60, R773-6 (1999).
[Crossref]

1998 (1)

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

1997 (1)

Z. Hradil, “Quantum-state estimation,” Phys. Rev. A. 55, R1561–R1564 (1997).
[Crossref]

1994 (1)

G. Brassard and L. Salvail, “Secret key reconciliation by public discussion,” Lecture Notes in Computer Science 765, 410423 (1994).
[Crossref]

1992 (1)

C.H. Bennett, G. Brassard, and N.D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

Albert-Seifried, S.

Albota, M.A.

F. Konig, E.J. Mason, F.N.C. Wong, and M.A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A. 71, 033805 (2005).
[Crossref]

Appelbaum, I.

P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A. 60, R773-6 (1999).
[Crossref]

Barbieri, C.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Barraza-Lopez, S.

P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409, 1014–1017 (2001).
[Crossref] [PubMed]

Bennett, C.H.

C.H. Bennett, G. Brassard, and N.D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

Blauensteiner, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Böhm, H. R.

Brassard, G.

G. Brassard and L. Salvail, “Secret key reconciliation by public discussion,” Lecture Notes in Computer Science 765, 410423 (1994).
[Crossref]

C.H. Bennett, G. Brassard, and N.D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

Brendel, J.

G. Ribordy, J. Brendel, J.D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A. 63, 012309 (2000).
[Crossref]

Briegel, H.

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Canalias, C.

Chaneliere, T.

D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
[Crossref] [PubMed]

Chen, J.

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.

Cirac, J. I.

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Damask, J. N.

J. N. Damask, Polarization Optics in Telecommunications (Springer2005).

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref] [PubMed]

Dür, W.

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Dusek, M.

M. Dusek, N. Lutkenhaus, and M. Hendrych, “Quantum Cryptography,” Progress in Optics 49, 381–454 (2006).

Eberhard, P.H.

P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A. 60, R773-6 (1999).
[Crossref]

Fedrizzi, A.

Fragemann, A.

Fuerst, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Gautier, J.D.

G. Ribordy, J. Brendel, J.D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A. 63, 012309 (2000).
[Crossref]

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref] [PubMed]

P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409, 1014–1017 (2001).
[Crossref] [PubMed]

G. Ribordy, J. Brendel, J.D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A. 63, 012309 (2000).
[Crossref]

Hendrych, M.

M. Dusek, N. Lutkenhaus, and M. Hendrych, “Quantum Cryptography,” Progress in Optics 49, 381–454 (2006).

Hradil, Z.

Z. Hradil, “Quantum-state estimation,” Phys. Rev. A. 55, R1561–R1564 (1997).
[Crossref]

James, D.F.V.

D.F.V. James, P.G. Kwiat, W.J. Munro, and A.G. White, “Measurement of qubits,” Phys. Rev. A. 64, 052312 (2001).
[Crossref]

Jenkins, S.D.

D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
[Crossref] [PubMed]

Jennewein, T.

A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Karlsson, A.

Kennedy, T.A.B.

D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
[Crossref] [PubMed]

Konig, F.

F. Konig, E.J. Mason, F.N.C. Wong, and M.A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A. 71, 033805 (2005).
[Crossref]

Kumar, P.

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.

C. Liang, K. F. Lee, M. Medic, and P. Kumar, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 12, 3573–3580 (2004).

Kurtsiefer, C.

Kuzmich, A.

D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
[Crossref] [PubMed]

Kwiat, P.G.

D.F.V. James, P.G. Kwiat, W.J. Munro, and A.G. White, “Measurement of qubits,” Phys. Rev. A. 64, 052312 (2001).
[Crossref]

P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409, 1014–1017 (2001).
[Crossref] [PubMed]

P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A. 60, R773-6 (1999).
[Crossref]

Lan, S.Y.

D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
[Crossref] [PubMed]

Laurell, F.

Lee, K. F.

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.

C. Liang, K. F. Lee, M. Medic, and P. Kumar, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 12, 3573–3580 (2004).

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref] [PubMed]

Liang, C.

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.

C. Liang, K. F. Lee, M. Medic, and P. Kumar, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 12, 3573–3580 (2004).

Lindenthal, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Ljunggren, D.

Lorünser, T.

Lutkenhaus, N.

M. Dusek, N. Lutkenhaus, and M. Hendrych, “Quantum Cryptography,” Progress in Optics 49, 381–454 (2006).

Lütkenhaus, N.

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref] [PubMed]

Marsden, P.

Mason, E.J.

F. Konig, E.J. Mason, F.N.C. Wong, and M.A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A. 71, 033805 (2005).
[Crossref]

Matsukevich, D.N.

D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
[Crossref] [PubMed]

Maurhardt, O.

Medic, M.

Mermin, N.D.

C.H. Bennett, G. Brassard, and N.D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

Meyenburg, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Munro, W.J.

D.F.V. James, P.G. Kwiat, W.J. Munro, and A.G. White, “Measurement of qubits,” Phys. Rev. A. 64, 052312 (2001).
[Crossref]

Oemer, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Peev, M.

Pelton, M.

Perdigues, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Poppe, A.

Rarity, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Ribordy, G.

G. Ribordy, J. Brendel, J.D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A. 63, 012309 (2000).
[Crossref]

Salvail, L.

G. Brassard and L. Salvail, “Secret key reconciliation by public discussion,” Lecture Notes in Computer Science 765, 410423 (1994).
[Crossref]

Sauge, S.

Scheidl, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Schmitt-Manderbach, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Sodnik, Z.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Stefanov, A.

P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409, 1014–1017 (2001).
[Crossref] [PubMed]

Suda, M.

Swillo, M.

Takesue, H.

Tenger, M.

Tengner, M.

S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, “Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks,” Opt. Express 15, 6926–6933 (2007).
[Crossref] [PubMed]

D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A. 73, 032326 (2006).
[Crossref]

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of narrow-band photon pairs into single-mode fibers,” Phys. Rev. A. 72, 062301 (2005).
[Crossref]

Tiefenbacher, F.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref] [PubMed]

Trojek, P.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Ursin, R.

A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Vidal, G.

G. Vidal and R.F. Werner,“Computable measure of entanglement,” Phys. Rev. A. 65, 032314 (2002).
[Crossref]

Waks, E.

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A. 65, 052310 (2002).
[Crossref]

P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A. 60, R773-6 (1999).
[Crossref]

Waldebäck, J.

Weier, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Weinfurter, H.

A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Werner, R.F.

G. Vidal and R.F. Werner,“Computable measure of entanglement,” Phys. Rev. A. 65, 032314 (2002).
[Crossref]

White, A.G.

D.F.V. James, P.G. Kwiat, W.J. Munro, and A.G. White, “Measurement of qubits,” Phys. Rev. A. 64, 052312 (2001).
[Crossref]

P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A. 60, R773-6 (1999).
[Crossref]

Wong, F.N.C.

F. Konig, E.J. Mason, F.N.C. Wong, and M.A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A. 71, 033805 (2005).
[Crossref]

Xavier, G. B.

Yamamoto, Y.

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A. 65, 052310 (2002).
[Crossref]

Zbinden, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref] [PubMed]

G. Ribordy, J. Brendel, J.D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A. 63, 012309 (2000).
[Crossref]

Zeevi, A.

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A. 65, 052310 (2002).
[Crossref]

Zeilinger, A.

A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

Zoller, P.

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Lecture Notes in Computer Science (1)

G. Brassard and L. Salvail, “Secret key reconciliation by public discussion,” Lecture Notes in Computer Science 765, 410423 (1994).
[Crossref]

Nature (1)

P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409, 1014–1017 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. A (1)

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

Phys. Rev. A. (9)

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A. 65, 052310 (2002).
[Crossref]

G. Ribordy, J. Brendel, J.D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A. 63, 012309 (2000).
[Crossref]

D.F.V. James, P.G. Kwiat, W.J. Munro, and A.G. White, “Measurement of qubits,” Phys. Rev. A. 64, 052312 (2001).
[Crossref]

Z. Hradil, “Quantum-state estimation,” Phys. Rev. A. 55, R1561–R1564 (1997).
[Crossref]

G. Vidal and R.F. Werner,“Computable measure of entanglement,” Phys. Rev. A. 65, 032314 (2002).
[Crossref]

F. Konig, E.J. Mason, F.N.C. Wong, and M.A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A. 71, 033805 (2005).
[Crossref]

P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A. 60, R773-6 (1999).
[Crossref]

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of narrow-band photon pairs into single-mode fibers,” Phys. Rev. A. 72, 062301 (2005).
[Crossref]

D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A. 73, 032326 (2006).
[Crossref]

Phys. Rev. Lett (1)

D.N. Matsukevich, T. Chaneliere, S.D. Jenkins, S.Y. Lan, T.A.B. Kennedy, and A. Kuzmich, “Entanglement of Remote Atomic Qubits,” Phys. Rev. Lett 96, 030405 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

C.H. Bennett, G. Brassard, and N.D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref] [PubMed]

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber,” Phys. Rev. Lett. 93, 180502 (2004).
[Crossref] [PubMed]

Progress in Optics (1)

M. Dusek, N. Lutkenhaus, and M. Hendrych, “Quantum Cryptography,” Progress in Optics 49, 381–454 (2006).

Other (3)

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Free-Space distribution of entanglement and single photons over 144 km,” http://www.arxiv.org/abs/quant-ph/0607182.

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.

J. N. Damask, Polarization Optics in Telecommunications (Springer2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(color online) Distribution and Measurement Scheme: A source of polarization entangled photon pairs produces photons at 810 and 1550 nm. The 810 nm pair-photons are polarization analyzed locally by Alice with a rotatable polarizer (Pol 810) and subsequently detected by her silicon APD (Si-APD). The partner photons at 1550 nm are transmitted to Bob via telecom fibers on spools, analyzed (Pol 1550) and detected by an InGaAs-APD. The random rotation in polarization is compensated by an electronic polarization controller (Pol.Cont.). The trigger signals are carefully matched by an electronic delay generator (Delay) to the transmission time through the fiber spools and the measured coincidence rate is displayed on a counter.

Fig. 2.
Fig. 2.

(color online) Optical Setup: The solid state diode pumped laser (Pump laser 532 nm) is focused (L1) at the interface of the two periodically-poled KTP nonlinear crystals (ppKTP) for highly non-degenerate collinear down-conversion. The half-wave-plate (HWP) rotates the pump to excite the horizontal (H) and vertical (V) crystals equally. The 810 and 1550 nm photons are spatially separated (Dichroic), recollimated by lens L2 and L3 and coupled into single-mode fibers (SMF). The wavepackets are spectrally confined and matched with filters BP 1550 and BP 810. A betraying timing offset between the photons of one pair is compensated by the birefringent wedges in the 810 nm arm.

Fig. 3.
Fig. 3.

(color online) (a) Real part of measured density matrices at fiber lengths of 0, 50, 75 and 101 km (raw data). The imaginary part is close to zero with no element higher than 0.09. (b) Uncorrected (oe-15-12-7853-i001) and corrected (oe-15-12-7853-i002) logarithmic negativity.

Fig. 4.
Fig. 4.

(color online) (a) Uncorrected visibilities at the source (oe-15-12-7853-i003), in fiber set I (oe-15-12-7853-i004) and II (oe-15-12-7853-i005) measured at different fiber lengths. The solid curves represent model calculations (Eq.3) for set I and II. For the measured data of set I we observe a discrepancy of 3 to 5% (dashed curve) with the model, indicating additional depolarization in the fiber. (b) Corrected visibilities (background subtracted) at the source (oe-15-12-7853-i006), in fiber set I (oe-15-12-7853-i007) and set II (oe-15-12-7853-i008). Again, the fitted dashed line to set I indicates a decrease in visibility from 4% to 6% below the expected value. The measured coincidence count rates for set I (oe-15-12-7853-i009) and II (oe-15-12-7853-i010) are displayed on the right scale. The increased loss due to higher chromatic dispersion in the standard fibers (> 63 km) is clearly visible in the different slopes before and after 63 km.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N ( ρ ) = λ i λ i 2 ,
E N ( ρ ) = log 2 ( 2 N + 1 )
V ( l ) = ( Max 0 Min 0 ) T ( l ) F ( l ) ( ( Max 0 + Min 0 ) F ( l ) + 2 R acc T ( l ) + 2 R dark )

Metrics