Abstract

We systematically studied the spectral and temporal characteristics of wavelength-sized ultrahigh-Q photonic crystal nanocavities based on width-modulated line defects. By employing accurate measurements, we confirmed that the cavity exhibits an ultra-sharp resonance width (1.23 pm), an ultrahigh-Q (1.28×106), and an ultra-long photon lifetime (1.12 ns). We discussed the correlation between the spectral and temporal measurements for various cavities, and obtained extremely good agreement. In addition, we demonstrated photon trapping for the side-coupling configuration by employing ring-down measurement, which sheds light on another interesting aspect of this phenomenon. Finally, we performed pulse propagation experiments for samples with different waveguide-cavity coupling configurations, and achieved a smallest group velocity of about 4.6 km/s for a novel configuration. These results show that we can effectively trap and delay light by using ultra-small cavities, which can potentially increase the packing density of optical buffers and bit-shifters if applied to coupled-cavity waveguides.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q troid microcavity on a chip," Nature 421, 925-928 (2003).
    [CrossRef] [PubMed]
  2. T. Kipperberg, S. Spillane, and K. Vahala, "Demonstration of ultra-high-Q small mode volume troid microcavities," Appl. Phys. Lett. 85, 6113-6115 (2004).
    [CrossRef]
  3. B. Gayral, J. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999).
    [CrossRef]
  4. B. Matthew, T. Johnson, and O. Painter, "Measuring the role of surface chemistry in silicon microphotonics," Appl. Phys. Lett. 88, 131114 (2006).
    [CrossRef]
  5. J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. T.-Mieg, " Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
    [CrossRef]
  6. J. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
    [CrossRef] [PubMed]
  7. V. Almeida,C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef]
  8. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
    [CrossRef]
  9. T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (¡« 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
    [CrossRef] [PubMed]
  10. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  11. R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
    [CrossRef] [PubMed]
  12. E. Weidner, S. Combri’e, N. Tran, A. De Rossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
    [CrossRef]
  13. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2
    [CrossRef]
  14. T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
    [CrossRef]
  15. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  16. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamo¡glu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
    [CrossRef] [PubMed]
  17. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  18. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
    [CrossRef] [PubMed]
  19. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  20. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
    [CrossRef] [PubMed]
  21. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
    [CrossRef] [PubMed]
  22. T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  23. A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
    [CrossRef] [PubMed]
  24. A. Yariv, Y. Xu, R. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  25. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  26. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
    [CrossRef]
  27. Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  28. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
    [CrossRef]
  29. T. Asano, B.-S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1121-1134 (2006).
  30. T. Asano, W. Kunishi, B.-S. Song, and S. Noda, "Time-domain response of point-defect cavities in twodimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006).
    [CrossRef]
  31. L. Bollinger and G. Thomas, "Measurement of the time dependence of scintillation intensity by a delayedcoincidence method," Rev. Sci. Instrum. 32, 1044-1050 (1961).
    [CrossRef]
  32. P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
    [CrossRef] [PubMed]
  33. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
    [CrossRef] [PubMed]
  34. S. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
    [CrossRef]
  35. D. Lukin, A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
    [CrossRef] [PubMed]
  36. H. Haus, Waves and field in optoelectronics (Prentice Hall, Englewood Cliffs, 1984).

2007

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2
[CrossRef]

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

2006

A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1121-1134 (2006).

T. Asano, W. Kunishi, B.-S. Song, and S. Noda, "Time-domain response of point-defect cavities in twodimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006).
[CrossRef]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (¡« 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
[CrossRef] [PubMed]

R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
[CrossRef] [PubMed]

E. Weidner, S. Combri’e, N. Tran, A. De Rossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
[CrossRef]

B. Matthew, T. Johnson, and O. Painter, "Measuring the role of surface chemistry in silicon microphotonics," Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

2005

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamo¡glu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

2004

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

J. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

V. Almeida,C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

T. Kipperberg, S. Spillane, and K. Vahala, "Demonstration of ultra-high-Q small mode volume troid microcavities," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

2003

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q troid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

D. Lukin, A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

1999

A. Yariv, Y. Xu, R. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
[CrossRef]

B. Gayral, J. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999).
[CrossRef]

1998

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. T.-Mieg, " Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

1997

S. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

1961

L. Bollinger and G. Thomas, "Measurement of the time dependence of scintillation intensity by a delayedcoincidence method," Rev. Sci. Instrum. 32, 1044-1050 (1961).
[CrossRef]

Akahane, Y.

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1121-1134 (2006).

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Almeida, V.

V. Almeida,C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q troid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Asano, T.

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

T. Asano, W. Kunishi, B.-S. Song, and S. Noda, "Time-domain response of point-defect cavities in twodimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006).
[CrossRef]

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1121-1134 (2006).

T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (¡« 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Baba, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
[CrossRef]

Badolato, A.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamo¡glu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Barclay, P.

Barrios, C.

V. Almeida,C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Bollinger, L.

L. Bollinger and G. Thomas, "Measurement of the time dependence of scintillation intensity by a delayedcoincidence method," Rev. Sci. Instrum. 32, 1044-1050 (1961).
[CrossRef]

Cojocaru, C.

A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fukuda, H.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Gayral, B.

B. Gayral, J. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Hamann, H.

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Harris, S.

S. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamo¡glu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Herrmann, R.

Ide, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
[CrossRef]

Imamoglu, A.

D. Lukin, A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Inokawa, H.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Itabashi, S.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Johnson, T.

B. Matthew, T. Johnson, and O. Painter, "Measuring the role of surface chemistry in silicon microphotonics," Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

Kawanishi, S.

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q troid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Kipperberg, T.

T. Kipperberg, S. Spillane, and K. Vahala, "Demonstration of ultra-high-Q small mode volume troid microcavities," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

Kira, G.

Kise, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
[CrossRef]

Kiyota, K.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
[CrossRef]

Kunishi, W.

T. Asano, W. Kunishi, B.-S. Song, and S. Noda, "Time-domain response of point-defect cavities in twodimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006).
[CrossRef]

Kuramochi, E.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2
[CrossRef]

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

Lee, R.

Levenson, J.

A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Lipson, M.

V. Almeida,C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Lukin, D.

D. Lukin, A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Matthew, B.

B. Matthew, T. Johnson, and O. Painter, "Measuring the role of surface chemistry in silicon microphotonics," Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

McNab, S.

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Mitsugi, M.

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Mitsugi, S.

Monnier, P.

A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Nishiguchi, K.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Noda, S.

T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (¡« 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
[CrossRef] [PubMed]

T. Asano, W. Kunishi, B.-S. Song, and S. Noda, "Time-domain response of point-defect cavities in twodimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006).
[CrossRef]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1121-1134 (2006).

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Notomi, M.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2
[CrossRef]

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Painter, O.

Panepucci, R.

V. Almeida,C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Raineri, F.

A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Raj, R.

A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Reithmaier, J.

J. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

A. Yariv, Y. Xu, R. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
[CrossRef]

Sek, G.

J. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Shinojima, H.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Shinya, A.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2
[CrossRef]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B.-S.

T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (¡« 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
[CrossRef] [PubMed]

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1121-1134 (2006).

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

T. Asano, W. Kunishi, B.-S. Song, and S. Noda, "Time-domain response of point-defect cavities in twodimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Spillane, S.

T. Kipperberg, S. Spillane, and K. Vahala, "Demonstration of ultra-high-Q small mode volume troid microcavities," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q troid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takara, H.

Tanabe, T.

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2
[CrossRef]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2
[CrossRef]

Thomas, G.

L. Bollinger and G. Thomas, "Measurement of the time dependence of scintillation intensity by a delayedcoincidence method," Rev. Sci. Instrum. 32, 1044-1050 (1961).
[CrossRef]

Tsuchizawa, T.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Uesugi, T.

Vahala, K.

T. Kipperberg, S. Spillane, and K. Vahala, "Demonstration of ultra-high-Q small mode volume troid microcavities," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q troid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Watanabe, T.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Weidner, E.

E. Weidner, S. Combri’e, N. Tran, A. De Rossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Xu, Y.

Yacomotti, A.

A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

Yamada, K.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yariv, A.

Yokohama, I.

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokouchi, N.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Kipperberg, S. Spillane, and K. Vahala, "Demonstration of ultra-high-Q small mode volume troid microcavities," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

B. Gayral, J. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999).
[CrossRef]

B. Matthew, T. Johnson, and O. Painter, "Measuring the role of surface chemistry in silicon microphotonics," Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

E. Weidner, S. Combri’e, N. Tran, A. De Rossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006).
[CrossRef]

T. Asano, W. Kunishi, B.-S. Song, and S. Noda, "Time-domain response of point-defect cavities in twodimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006).
[CrossRef]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Electron. Lett.

T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1121-1134 (2006).

Nature

D. Lukin, A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q troid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

J. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004).
[CrossRef] [PubMed]

V. Almeida,C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef]

Nature Mat.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005).
[CrossRef]

Nature Photon.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. T.-Mieg, " Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Phys. Today

S. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Rev. Sci. Instrum.

L. Bollinger and G. Thomas, "Measurement of the time dependence of scintillation intensity by a delayedcoincidence method," Rev. Sci. Instrum. 32, 1044-1050 (1961).
[CrossRef]

Science

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamo¡glu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Other

H. Haus, Waves and field in optoelectronics (Prentice Hall, Englewood Cliffs, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) Cavity design. The lattice constant a, hole radius r, and slab thickness t are 420, 108, and 204 nm respectively. The waveguide width is 0.9a√3. The holes indicated with A and B are shifted 8 and 4 nm in the transverse direction. (b) Transmittance spectrum. The black dots show the measured plot, and the red curve is the fitted Lorentz curve, where the FWHM is 1.22 pm.

Fig. 2.
Fig. 2.

(a) Measured transmittance spectrum of a high finesse Fabry-Pérot cavity with a transmission width of 35 fm. (b) The transmittance of the CW laser light, which has the same wavelength as the resonance of the PhC nanocavity. For the first 60 s, the PhC nanocavity device was placed in an insulated environment to stabilize its temperature.

Fig. 3.
Fig. 3.

(a-f) Spectrum measurement of the same ultrahigh-Q PhC nanocavity. The FWHM of the fitted Lorentz curve is shown in each panel.

Fig. 4.
Fig. 4.

(a) Schematic diagram of the ring-down measurement. (b) Measured cavity discharging waveform.

Fig. 5.
Fig. 5.

(a-f) The first 6 of 16 results are shown. The photon lifetime obtained from the fitted exponential curve is shown in each panel. Each result was acquired after a 2 ~ 3 min interval.

Fig. 6.
Fig. 6.

(a-e) Transmittance of PhC nanocavities with various Q values. The measured Q and the corresponding photon lifetimes are shown in each panel.

Fig. 7.
Fig. 7.

Ring-down measurement results for PhC nanocavities with different Q values. The label corresponds to that in Fig. 6. The fitted decays are: (a) 890 ps, (b) 450 ps, (c) 280 ps, (d) 160 ps, and (e) 52 ps.

Fig. 8.
Fig. 8.

Q spec is the Q value obtained from the transmittance spectrum bandwidth and Q time is the Qs obtained from the decay of the ring-down waveform. (a) Square dots show the Q time measured using TCSPC and round dots show the Q time measured using DSO. The dotted line indicates the ideal case. (b) Q time/Q spec with respect to Q spec

Fig. 9.
Fig. 9.

(a) Transmittance spectrum of a side-coupled cavity. (b) The output waveform when a square shaped pulse is input into a PhC nanocavity.

Fig. 10.
Fig. 10.

Schematic diagram of the pulse delay measurement. d = 8.4μm. WG: Waveguide.

Fig. 11.
Fig. 11.

(a) Transmittance of a Fabry-Pérot cavity with respect to normalized frequency. (b) Phase property with respect to normalized frequency. (c) Delay with respect to normalized frequency. The delay is calculated from the tilt of graph (b).

Fig. 12.
Fig. 12.

Pulse delay experiment. An output waveform from the reference PhC waveguide is shown in black. The output from a PhC nanocavity is shown by the red curve. (a) Output waveform for an input pulse with a pulse width of 1.4 ns. The obtained delay is 1.1 ns. (b) Output waveform for a 2.0-ns input pulse. The delay is 1.2 ns. (c) Output for a 3.2-ns input pulse. The delay is 1.4 ns. (d) Output for a 5.9-ns input pulse. The delay is about 1.5 ns.

Fig. 13.
Fig. 13.

Calculated output waveform for different input pulse widths. ∆τ is the FWHM of the Gaussian shaped input pulse. Time is normalized with τ ph .

Fig. 14.
Fig. 14.

(a) Three curves are shown with respect to the FWHM of the input pulse ∆τ. FWHM of the output pulse ∆τ out (normalized with τ ph ), delay τ d between the input and output pulse peak (normalized with τ ph ), and pulse shift (Θ = τ d/∆τ out ). (b) The same graphs as a function of the wavelength detuning between the input light and the cavity resonance for an input pulse width of ∆τ = τ ph . The detuning is normalized with the FWHM of the cavity transmittance spectrum ∆λ.

Fig. 15.
Fig. 15.

(a) Diagram of the structure of the closely WG coupled PhC cavity. d = 5.0 μm (b) Pulse delay experiment for an input pulse width of 1.9 ns. The obtained delay is 0.7 ns which corresponds to a group velocity of 7.2 km/s. (c) Pulse delay experiment with an input pulse of 3.3 ns. The obtained delay is ~1.1 ns, which corresponds to a group velocity of ~4.6 km/s.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d a d t = ( j ω 0 1 τ ) a + ( 1 τ ) 1 / 2 p i n ( t )
p o u t ( t ) = ( 1 τ ) 1 / 2 a ( t ) ,
P i n ( t ) = | p i n ( t ) | 2 P o u t ( t ) = | p o u t ( t ) | 2 τ p h = τ 2 .

Metrics