Abstract

We demonstrate optical 2R regeneration in an integrated silicon device consisting of an 8-mm-long nanowaveguide followed by a ring-resonator bandpass filter. The regeneration process is based on nonlinear spectral broadening in the waveguide and subsequent spectral filtering through the ring resonator. We measure the nonlinear power transfer function for the device and find an operating peak power of 6 W. Measurements indicate that the output pulse width is determined only by the bandwidth of the bandpass filter. Numerical modeling of the nonlinear process including free-carrier effects shows that this device can be used for all-optical regeneration at telecommunication data rates.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC’98), p. 475, 1998.
  2. J. Yu and P. Jeppesen, "Simultaneous all-optical demultiplexing and regeneration based on self-phase and cross-phase modulation in a dispersion shifted fiber," J. Lightwave Technol. 19, 941-949 (2001).
    [CrossRef]
  3. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
    [CrossRef] [PubMed]
  4. A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," J. Quantum Electron. 10, 192-196 (2004).
  5. S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
    [CrossRef]
  6. H. Simos, A. Bogris, and D. Syvridis, "Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier," J. Lightwave Technol. 22, 595-604 (2004).
    [CrossRef]
  7. M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
    [CrossRef]
  8. N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
    [CrossRef]
  9. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2880>
    [CrossRef] [PubMed]
  10. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-17-4094>
    [CrossRef] [PubMed]
  11. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-12-5524>
    [CrossRef] [PubMed]
  12. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic-wire waveguides," Opt. Express 14, 12380-12387 (2006), http://www.opticsexpress.org/abstract.cfm?id=119784>
    [CrossRef] [PubMed]
  13. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-8-1611>
    [CrossRef] [PubMed]
  14. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 µm femtosecond pulses," Opt. Express 14, 8336-8346 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-18-8336>
    [CrossRef] [PubMed]
  15. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta., "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
    [CrossRef] [PubMed]
  16. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
    [CrossRef]
  17. K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-25-12327>
    [CrossRef] [PubMed]
  18. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-11-4786>
    [CrossRef] [PubMed]
  19. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  20. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef]
  21. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005), http://www.opticsexpress.org/abstract.cfm?id=85498>
    [CrossRef] [PubMed]
  22. M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
    [CrossRef]
  23. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-10-4357>
    [CrossRef] [PubMed]
  24. C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
    [CrossRef]
  25. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
    [CrossRef] [PubMed]
  26. A. G. Striegler and B. Schmauss, "Analysis and optimization of SPM-Based 2R regeneration at 40 Gb/s," J. Lightwave Technol. 24, 2835-2833 (2006).
    [CrossRef]
  27. T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J.-C. Simon, and M. Joindot, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006), http://www.opticsexpress.org/abstract.cfm?id=88314>
    [CrossRef] [PubMed]

2006 (13)

S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
[CrossRef]

M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta., "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J.-C. Simon, and M. Joindot, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006), http://www.opticsexpress.org/abstract.cfm?id=88314>
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-10-4357>
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-11-4786>
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-12-5524>
[CrossRef] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 µm femtosecond pulses," Opt. Express 14, 8336-8346 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-18-8336>
[CrossRef] [PubMed]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-25-12327>
[CrossRef] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic-wire waveguides," Opt. Express 14, 12380-12387 (2006), http://www.opticsexpress.org/abstract.cfm?id=119784>
[CrossRef] [PubMed]

A. G. Striegler and B. Schmauss, "Analysis and optimization of SPM-Based 2R regeneration at 40 Gb/s," J. Lightwave Technol. 24, 2835-2833 (2006).
[CrossRef]

2005 (3)

2004 (8)

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-8-1611>
[CrossRef] [PubMed]

H. Simos, A. Bogris, and D. Syvridis, "Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier," J. Lightwave Technol. 22, 595-604 (2004).
[CrossRef]

M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2880>
[CrossRef] [PubMed]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-17-4094>
[CrossRef] [PubMed]

C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," J. Quantum Electron. 10, 192-196 (2004).

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
[CrossRef]

2003 (1)

2001 (1)

Agata, A.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
[CrossRef]

Agrawal, G. P.

Akiba, S.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef]

Barrios, C. A.

C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bogoni, A.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," J. Quantum Electron. 10, 192-196 (2004).

Bogris, A.

Boyraz, O.

Bramerie, L.

Chartier, T.

Chen, X.

Cohen, O.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
[CrossRef]

Cowan, A. R.

Dadap, J. I.

Dekker, R.

Driessen, A.

Dulkeith, E.

Edagawa, N.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
[CrossRef]

Eggleton, B. J.

M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005), http://www.opticsexpress.org/abstract.cfm?id=85498>
[CrossRef] [PubMed]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

Fauchet, P. M.

Forst, M.

Foster, M. A.

Fu, L.

M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

Fu, L. B.

Gaeta, A. L.

Gay, M.

Ghelfi, P.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," J. Quantum Electron. 10, 192-196 (2004).

Hsieh, I.-W.

Jalali, B.

Jeppesen, P.

Joindot, M.

Kevin,

Koonath, P.

Kuo, Y.-H.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
[CrossRef]

Lamont, M. R. E.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

Lin, Q.

Lipson, M.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-10-4357>
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta., "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef]

Littler, I. C. M.

Luther-Davies, B.

Manolatou, C.

McNab, S. J.

Moll, K. D.

Moormann, C.

Morita, I.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
[CrossRef]

Moss, D. J.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005), http://www.opticsexpress.org/abstract.cfm?id=85498>
[CrossRef] [PubMed]

Nguyen, T. N.

Niehusmann, J.

Osgood, R. M.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef]

Paniccia, M.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
[CrossRef]

Panoiu, N. C.

Poti, L.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," J. Quantum Electron. 10, 192-196 (2004).

Preble, S. F.

Raghunathan, V.

Rieger, G. W.

Rochette, M

M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Rochette, M.

Rong, H.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
[CrossRef]

Ruan, Y.

Scaffardi, M.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," J. Quantum Electron. 10, 192-196 (2004).

Schmauss, B.

Schmidt, B. S.

Shahed, M.

S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
[CrossRef]

Sharping, J. E.

Shokooh-Saremi, M.

Sih, V.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
[CrossRef]

Simon, J.-C.

Simos, H.

Striegler, A. G.

Syvridis, D.

Ta’eed, V.

M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Ta’eed, V. G.

Tsuritani, T.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
[CrossRef]

Turner, A. C.

Vlasov, Y. A.

Wahlbrink, T.

Xu, Q.

Xu, S.

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
[CrossRef]

Yamashita, S.

S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
[CrossRef]

Yoshikane, N.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
[CrossRef]

Young, J. F.

Yu, J.

Zhang, J.

IEEE J. Sel. Top. Quantum Electron. (2)

M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

J. Appl. Phys. (1)

C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Quantum Electron. (1)

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," J. Quantum Electron. 10, 192-196 (2004).

Nature (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta., "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Express (12)

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-10-4357>
[CrossRef] [PubMed]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J.-C. Simon, and M. Joindot, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006), http://www.opticsexpress.org/abstract.cfm?id=88314>
[CrossRef] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005), http://www.opticsexpress.org/abstract.cfm?id=85498>
[CrossRef] [PubMed]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721>
[CrossRef]

K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-25-12327>
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-11-4786>
[CrossRef] [PubMed]

M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2880>
[CrossRef] [PubMed]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-17-4094>
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-12-5524>
[CrossRef] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic-wire waveguides," Opt. Express 14, 12380-12387 (2006), http://www.opticsexpress.org/abstract.cfm?id=119784>
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-8-1611>
[CrossRef] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 µm femtosecond pulses," Opt. Express 14, 8336-8346 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-18-8336>
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (1)

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC’98), p. 475, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Diagram of the regenerator device. BPF: band-pass filter. (b) Measured transmission spectra of pass and drop ports of the ring resonator for TM polarization.

Fig. 2.
Fig. 2.

(a) Experimental setup used for measuring the power transfer function of the regenerator. The waveguide without ring resonator is used to measure the broadened spectrum. (b) Broadened spectra for different pulse peak powers after passing through the silicon waveguide without the ring resonator. (c) Output spectra from the drop port of the ring resonator (regenerator output).

Fig. 3.
Fig. 3.

(a) Measured power transfer function for the device and numerical simulation (dashed curve). (b) Numerical simulation of the power transfer function for different output filters. (c) Input pulse autocorrelation and that of a Gaussian profile with the same FWHM (dashed line). (d) Output autocorrelation and that of a Gaussian profile with the same FWHM.

Fig. 4.
Fig. 4.

(a) Simulated eye diagrams of the data at the input and output of the regenerator when amplitude and ghost pulses are present. (b) Simulated eye diagrams of the noisy data at the input and output of the regenerator (histogram for the peak power of the logical 1’s is shown). (c) Estimated Q-factor of the input and output for the case of noisy input.

Metrics