Abstract

Optical gain spectra presented for (Al,In)GaN laser diodes with lasing wavelength ranging from UV (375 nm) to aquamarine (470 nm) show a strong increase in inhomogeneous broadening, caused by Indium composition and quantum well width fluctuations which increase with Indium mole fraction. These gain spectra provides a standard data set for the calibration of microscopic many–body simulations. We demonstrate by comparison with basic simulations that the different assumptions of a global constant carrier density or of global constant quasi–Fermi levels for electrons and holes lead to a strikingly different dependency of optical gain on carrier density. For constant quasi–Fermi levels the threshold carrier density becomes insensitive to inhomogeneous broadening for realistic parameters. This is in agreement with the observation that the threshold current is nearly independent over the wavelength range from near UV to aquamarine.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. V. Moloney, J. Hader, and S.W. Koch, "Quantum design of semiconductor active materials: laser and amplifier applications," Laser and Photon. Rev. 1, 1 (2007).
  2. B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
    [CrossRef]
  3. J. Hader, J. V. Moloney, and S.W. Koch, "Influence of internal fields on gain and spontaneous emission in InGaN quantum wells," Appl. Phys. Lett. 89, 171120 (2006).
    [CrossRef]
  4. S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
    [CrossRef]
  5. S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
    [CrossRef]
  6. T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006).
    [CrossRef]
  7. B. W. Hakki and T. L. Paoli, "cw degradation at 300. K of GaAs double-heterostructure junction laser. II. Electronic gain," J. Appl. Phys. 44, 4113 (1973).
    [CrossRef]
  8. U. T. Schwarz, E. Sturm,W. Wegscheider, V. K mmler, A. Lell, and V. Härle, "Gain spectra and current-induced change of refractive index in (In/Al)GaN diode lasers," Phys. Status Solidi A 200, 143 (2003).
    [CrossRef]
  9. K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
    [CrossRef]
  10. B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
    [CrossRef]
  11. M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
    [CrossRef]
  12. L. Banyai and S. W. Koch, "A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors," Z. Phys. B - Condensed Matter 63, 283 (1986).
    [CrossRef]
  13. U. T. Schwarz and B. Witzigmann, "Optical properties of edge-emitting lasers: measurement and simulation," in "Nitride semiconductor devices: principles and simulation," J. Piprek, Ed. (Wiley VCH, New York, 2007).
  14. A. A. Yamaguchi, M. Kuramoto, M. Nido, and M. Mizuta, "An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: I. A band-states model for an alloy-fluctuated InGaN-material system designed for quantum well laser operation," Semicond. Sci. Technol. 16, 763 (2001).
    [CrossRef]
  15. U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
    [CrossRef]

2007

J. V. Moloney, J. Hader, and S.W. Koch, "Quantum design of semiconductor active materials: laser and amplifier applications," Laser and Photon. Rev. 1, 1 (2007).

U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
[CrossRef]

2006

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

J. Hader, J. V. Moloney, and S.W. Koch, "Influence of internal fields on gain and spontaneous emission in InGaN quantum wells," Appl. Phys. Lett. 89, 171120 (2006).
[CrossRef]

T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006).
[CrossRef]

2005

S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
[CrossRef]

2003

U. T. Schwarz, E. Sturm,W. Wegscheider, V. K mmler, A. Lell, and V. Härle, "Gain spectra and current-induced change of refractive index in (In/Al)GaN diode lasers," Phys. Status Solidi A 200, 143 (2003).
[CrossRef]

S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
[CrossRef]

2001

A. A. Yamaguchi, M. Kuramoto, M. Nido, and M. Mizuta, "An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: I. A band-states model for an alloy-fluctuated InGaN-material system designed for quantum well laser operation," Semicond. Sci. Technol. 16, 763 (2001).
[CrossRef]

1986

L. Banyai and S. W. Koch, "A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors," Z. Phys. B - Condensed Matter 63, 283 (1986).
[CrossRef]

1984

M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
[CrossRef]

1973

B. W. Hakki and T. L. Paoli, "cw degradation at 300. K of GaAs double-heterostructure junction laser. II. Electronic gain," J. Appl. Phys. 44, 4113 (1973).
[CrossRef]

Banyai, L.

L. Banyai and S. W. Koch, "A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors," Z. Phys. B - Condensed Matter 63, 283 (1986).
[CrossRef]

Braun, H.

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

Capizzi, M.

M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
[CrossRef]

Engl, K.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

Feicht, G.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

Fischer, H.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

Frova, A.

M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
[CrossRef]

Fujimura, Y.

S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
[CrossRef]

Funato, M.

U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
[CrossRef]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

Furitsch, M.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

Guzzi, M.

M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
[CrossRef]

Hader, J.

J. V. Moloney, J. Hader, and S.W. Koch, "Quantum design of semiconductor active materials: laser and amplifier applications," Laser and Photon. Rev. 1, 1 (2007).

J. Hader, J. V. Moloney, and S.W. Koch, "Influence of internal fields on gain and spontaneous emission in InGaN quantum wells," Appl. Phys. Lett. 89, 171120 (2006).
[CrossRef]

Hakki, B. W.

B. W. Hakki and T. L. Paoli, "cw degradation at 300. K of GaAs double-heterostructure junction laser. II. Electronic gain," J. Appl. Phys. 44, 4113 (1973).
[CrossRef]

Härle, V.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

Kawakami, Y.

U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
[CrossRef]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

Koch, S. W.

L. Banyai and S. W. Koch, "A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors," Z. Phys. B - Condensed Matter 63, 283 (1986).
[CrossRef]

Koch, S.W.

J. V. Moloney, J. Hader, and S.W. Koch, "Quantum design of semiconductor active materials: laser and amplifier applications," Laser and Photon. Rev. 1, 1 (2007).

J. Hader, J. V. Moloney, and S.W. Koch, "Influence of internal fields on gain and spontaneous emission in InGaN quantum wells," Appl. Phys. Lett. 89, 171120 (2006).
[CrossRef]

Kojima, K.

U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
[CrossRef]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

Kozaki, T.

T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006).
[CrossRef]

S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
[CrossRef]

S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
[CrossRef]

Kuramoto, M.

A. A. Yamaguchi, M. Kuramoto, M. Nido, and M. Mizuta, "An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: I. A band-states model for an alloy-fluctuated InGaN-material system designed for quantum well laser operation," Semicond. Sci. Technol. 16, 763 (2001).
[CrossRef]

Laino, V.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

Leber, A.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

Lell, A.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

Logan, R. A.

M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
[CrossRef]

Luisier, M.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

Masui, S.

S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
[CrossRef]

Matsumura, H.

T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006).
[CrossRef]

Matsuyama, Y.

S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
[CrossRef]

Mizuta, M.

A. A. Yamaguchi, M. Kuramoto, M. Nido, and M. Mizuta, "An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: I. A band-states model for an alloy-fluctuated InGaN-material system designed for quantum well laser operation," Semicond. Sci. Technol. 16, 763 (2001).
[CrossRef]

Modesti, S.

M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
[CrossRef]

Moloney, J. V.

J. V. Moloney, J. Hader, and S.W. Koch, "Quantum design of semiconductor active materials: laser and amplifier applications," Laser and Photon. Rev. 1, 1 (2007).

J. Hader, J. V. Moloney, and S.W. Koch, "Influence of internal fields on gain and spontaneous emission in InGaN quantum wells," Appl. Phys. Lett. 89, 171120 (2006).
[CrossRef]

Mukai, T.

U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
[CrossRef]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006).
[CrossRef]

S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
[CrossRef]

S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
[CrossRef]

Nagahama, S.

U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
[CrossRef]

T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006).
[CrossRef]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
[CrossRef]

S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
[CrossRef]

S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
[CrossRef]

Nido, M.

A. A. Yamaguchi, M. Kuramoto, M. Nido, and M. Mizuta, "An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: I. A band-states model for an alloy-fluctuated InGaN-material system designed for quantum well laser operation," Semicond. Sci. Technol. 16, 763 (2001).
[CrossRef]

Paoli, T. L.

B. W. Hakki and T. L. Paoli, "cw degradation at 300. K of GaAs double-heterostructure junction laser. II. Electronic gain," J. Appl. Phys. 44, 4113 (1973).
[CrossRef]

Rumbolz, C.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

Schwarz, U. T.

U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

U. T. Schwarz, E. Sturm,W. Wegscheider, V. K mmler, A. Lell, and V. Härle, "Gain spectra and current-induced change of refractive index in (In/Al)GaN diode lasers," Phys. Status Solidi A 200, 143 (2003).
[CrossRef]

Staehli, J. L.

M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
[CrossRef]

Sturm, E.

U. T. Schwarz, E. Sturm,W. Wegscheider, V. K mmler, A. Lell, and V. Härle, "Gain spectra and current-induced change of refractive index in (In/Al)GaN diode lasers," Phys. Status Solidi A 200, 143 (2003).
[CrossRef]

Sugimoto, Y.

T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006).
[CrossRef]

S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
[CrossRef]

Wegscheider, W.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

U. T. Schwarz, E. Sturm,W. Wegscheider, V. K mmler, A. Lell, and V. Härle, "Gain spectra and current-induced change of refractive index in (In/Al)GaN diode lasers," Phys. Status Solidi A 200, 143 (2003).
[CrossRef]

Witzigmann, B.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

Yamaguchi, A. A.

A. A. Yamaguchi, M. Kuramoto, M. Nido, and M. Mizuta, "An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: I. A band-states model for an alloy-fluctuated InGaN-material system designed for quantum well laser operation," Semicond. Sci. Technol. 16, 763 (2001).
[CrossRef]

Yanamoto, T.

S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
[CrossRef]

Appl. Phys. Lett.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006).
[CrossRef]

J. Hader, J. V. Moloney, and S.W. Koch, "Influence of internal fields on gain and spontaneous emission in InGaN quantum wells," Appl. Phys. Lett. 89, 171120 (2006).
[CrossRef]

K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006).
[CrossRef]

J. Appl. Phys.

B. W. Hakki and T. L. Paoli, "cw degradation at 300. K of GaAs double-heterostructure junction laser. II. Electronic gain," J. Appl. Phys. 44, 4113 (1973).
[CrossRef]

Jpn. J. Appl. Phys.

S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003).
[CrossRef]

Laser and Photon. Rev.

J. V. Moloney, J. Hader, and S.W. Koch, "Quantum design of semiconductor active materials: laser and amplifier applications," Laser and Photon. Rev. 1, 1 (2007).

Phys. Rev. B

M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984).
[CrossRef]

Phys. Status Solidi A

U. T. Schwarz, E. Sturm,W. Wegscheider, V. K mmler, A. Lell, and V. Härle, "Gain spectra and current-induced change of refractive index in (In/Al)GaN diode lasers," Phys. Status Solidi A 200, 143 (2003).
[CrossRef]

Proc. SPIE

U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007).
[CrossRef]

S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005).
[CrossRef]

T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006).
[CrossRef]

Semicond. Sci. Technol.

A. A. Yamaguchi, M. Kuramoto, M. Nido, and M. Mizuta, "An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: I. A band-states model for an alloy-fluctuated InGaN-material system designed for quantum well laser operation," Semicond. Sci. Technol. 16, 763 (2001).
[CrossRef]

Z. Phys. B - Condensed Matter

L. Banyai and S. W. Koch, "A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors," Z. Phys. B - Condensed Matter 63, 283 (1986).
[CrossRef]

Other

U. T. Schwarz and B. Witzigmann, "Optical properties of edge-emitting lasers: measurement and simulation," in "Nitride semiconductor devices: principles and simulation," J. Piprek, Ed. (Wiley VCH, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical gain spectra. The gain spectra of laser diodes with lasing wavelengths of 375 nm, 405 nm, 440 nm, and 470 nm from near UV to aquamarine spectral range show an increasing inhomogeneous broadening for longer wavelengths.

Fig. 2.
Fig. 2.

Gain at the maximum of the gain spectra. (a) peak modal gain for four (Al,In)GaN laser diodes with lasing wavelength of 375nm, 405nm, 440nm, and 470nm. (b) corresponding differential gain.

Fig. 3.
Fig. 3.

Calculated peak material gain. Material gain as function of carrier density for different values of inhomogeneous broadening corresponding to the gain spectra of the individual LDs for the (a) constant carrier density and (b) constant Fermi level model.

Fig. 4.
Fig. 4.

Dependency of threshold carrier density on carrier transport model. Contour plot of equal material gain for (a) the constant carrier density and (b) the constant Fermi level model. The horizontal dashed lines mark the inhomogeneous broadening for the four LDs. The threshold material gain of all four LDs, extrapolated to a standard LD geometry, is marked by red circles. Note that the inhomogeneous broadening scale in both panels is different: a value Γinh = 100meV in the constant carrier density model predicts gain spectra of the same width as a corresponding value Γinh = 140meV in the constant Fermi level model.

Metrics