Abstract

Hollow-core microstructured polymer optical fibres with a kagome lattice cladding are reported. These fibres do not have photonic bandgaps, instead, leakage from the core is suppressed by a low density of states in the cladding, a low overlap of the core mode and the cladding modes and a reduced susceptibility to perturbations. The latter two are the result of a low overlap between the core mode and the solid parts of the microstructure, which also reduces the absorption by the polymer. Losses two orders of magnitude below the material loss were observed and the potential of hollow-core polymer fibres to guide light in the infrared, where the material absorption is high, will be discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic-cystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  2. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]
  3. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fibre cladding," Opt. Express 15, 325-338 (2007).
    [CrossRef] [PubMed]
  4. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, P. St. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13, 8277-8285 (2005).
    [CrossRef] [PubMed]
  5. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  6. A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, I. M. Bassett, "Hollow-core microstructured polymer optical fibres," Opt. Lett. 31, 172-174 (2006).
    [CrossRef] [PubMed]
  7. F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  8. F. Couny, F. Benabid, and P. S. Light, "Large-pitch kagome-structured hollow-core photonic crystal fiber," Opt. Lett. 31, 3574-3576 (2006).
    [CrossRef] [PubMed]
  9. T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, P. St. J. Russell, "Modelling of a novel hollow-core photonic crystal fibre," in Proc. CLEO, Baltimore MA 1-6 June 2003.
  10. W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF Polymer Optical Fibers for Data Communication, (Springer, Berlin, Germany, 2002)
  11. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
    [CrossRef]
  12. W.J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers," Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  13. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. S. Russell, "Scaling laws and vector effects in bandgap guiding fibers," Opt. Express 12, 69-74 (2004).
    [CrossRef] [PubMed]
  14. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  15. N. A. Issa and L. Poladian, "Vector wave expansion method for leaky modes of microstructured optical fibres," J. Lightwave Technol. 21, 1005-1012 (2003).
    [CrossRef]
  16. The open interstitial holes largely prohibited the cladding from supporting "apex" modes [3] concentrated in the corners between the struts. Although one example can be seen in Fig. 4(b), these modes were not found to be significant and were thus ignored.
  17. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004).
    [CrossRef] [PubMed]
  18. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
    [CrossRef] [PubMed]
  19. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, B. J. Mangan, "Hollow core photonic crystal fibers for beam delivery," Opt. Express 12, 1477-1484 (2004).
    [CrossRef] [PubMed]
  20. S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, "Role of material properties and drawing conditions in the fabrication of microstructured optical fibers," J. Lightwave Technol. 24, 853-860 (2006).
    [CrossRef]

2007 (1)

2006 (5)

2005 (2)

2004 (6)

2003 (1)

2002 (2)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Allan, D. C.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Argyros, A.

Barton, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Barton, G. W.

Bassett, I. M.

Benabid, F.

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Biancalana, F.

Bird, D. M.

Birks, T. A.

Borrelli, N. F.

Bouwmans, G.

Burnett, M. T.

Couny, F.

Cox, F. M.

Farr, L.

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Hedley, T. D.

Henry, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Humbert, G.

Issa, N. A.

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Joly, N.

Knight, J. C.

Koch, K. W.

Koshiba, M.

Large, M. C. J.

Light, P. S.

Lwin, R.

Maier, S. A.

Mangan, B. J.

Mason, M. W.

Mortensen, N. A.

Poladian, L.

Pottage, J. M.

Roberts, P. J.

Russell, P. S.

Russell, P. St. J.

Sabert, H.

Saitoh, K.

Smith, C. M.

Tanner, R. I.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Tomlinson, A.

van Eijkelenborg, M. A.

A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, I. M. Bassett, "Hollow-core microstructured polymer optical fibres," Opt. Lett. 31, 172-174 (2006).
[CrossRef] [PubMed]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Wadsworth, W. J.

Wadsworth, W.J.

West, J. A.

Williams, D. P.

Xue, S. C.

Zagari, J.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

J. Lightwave Technol. (3)

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Opt. Express (9)

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. S. Russell, "Scaling laws and vector effects in bandgap guiding fibers," Opt. Express 12, 69-74 (2004).
[CrossRef] [PubMed]

W.J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers," Opt. Express 12, 299-309 (2004).
[CrossRef] [PubMed]

K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004).
[CrossRef] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, B. J. Mangan, "Hollow core photonic crystal fibers for beam delivery," Opt. Express 12, 1477-1484 (2004).
[CrossRef] [PubMed]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, P. St. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13, 8277-8285 (2005).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fibre cladding," Opt. Express 15, 325-338 (2007).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, "Fabrication of microstructured polymer optical fibres," Opt. Fiber Technol. 10, 325-335 (2004).
[CrossRef]

Opt. Lett. (2)

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Other (3)

T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, P. St. J. Russell, "Modelling of a novel hollow-core photonic crystal fibre," in Proc. CLEO, Baltimore MA 1-6 June 2003.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF Polymer Optical Fibers for Data Communication, (Springer, Berlin, Germany, 2002)

The open interstitial holes largely prohibited the cladding from supporting "apex" modes [3] concentrated in the corners between the struts. Although one example can be seen in Fig. 4(b), these modes were not found to be significant and were thus ignored.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM images of (a) a three ring fibre and (b) the unit cell in the cladding. (c) Optical micrograph of a seven-ring fibre illuminated from below with white light, showing guidance in the core.

Fig. 2.
Fig. 2.

Transmission spectra as a function of (a) wavelength and (b) normalised frequency of the three-ring fibres with Λ = 20 μm, length 1.5 m (black); Λ = 17.5 μm, length 0.5 m (blue); Λ = 14 μm, length 0.5 m (red); Λ = 12 μm, length 0.3 m (light blue). The transmission axis has an arbitrary offset. The inset shows the near field of the output.

Fig. 3.
Fig. 3.

(a). Structure used for the simulations (Λ = 10 μm) showing the near field of the fundamental mode on a linear (left) and logarithmic scale (right, 50 dB range shown, cf inset of Fig. 2). (b) The cross-sections of the near field taken from corner to corner and across the flat sides of the hexagonal core.

Fig. 4.
Fig. 4.

(a). The core (blue) and cladding modes (black) of the modelled structure with example strut and airy modes indicated (red). The high-density mode regions in the vicinity of the core mode are highlighted in orange. Only modes of the same symmetry as the fundamental mode are shown, modes of other symmetries had identical distributions. Inset shows the calculated near field of the fundamental mode at 560 nm. (b) Examples of calculated cladding modes, also at 560 nm, close in n eff to the core mode. The core mode falls between the 3rd and 4th example, indicated by the “x”.

Fig. 5
Fig. 5

The potential loss of HC-mPOF is estimated by applying the analysis of [2] and assuming 9-cell and 17-cell core sizes (thick curves). Estimates for a kagome-lattice fibre with 0.025% overlap are also shown (dotted curve) but it is unclear whether other loss mechanisms will prevail. The material absorption of PMMA is also shown (thin curve). The horizontal dashed line indicates the current operating loss of 0.15 dB/m (at 650 nm).

Metrics