Abstract

We observe, for the first time to our knowledge, the formation of optical solitons inside a short silicon waveguide (only 5 mm long) at sub-picojoule pulse energy levels. We measure a significant spectral narrowing in the anomalous-dispersion regime of such a waveguide, in contrast to all previous reported experiments. The extent of spectral narrowing depends on the carrier wavelength of input pulses, and the observed spectrum broadens in the normal-dispersion region. Numerical simulations confirm our experimental observations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678- 1687 (2006).
    [CrossRef]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  4. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007).
  6. G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 m pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
    [CrossRef]
  7. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
    [CrossRef] [PubMed]
  8. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 m pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
    [CrossRef] [PubMed]
  9. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, and M. Tsuchiya, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
    [CrossRef] [PubMed]
  10. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 m femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
    [CrossRef] [PubMed]
  11. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006).
    [CrossRef] [PubMed]
  12. I. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides," Opt. Express 14, 12380-12387 (2006).
    [CrossRef] [PubMed]
  13. L. Yin, Q. Lin and G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006).
    [CrossRef] [PubMed]
  14. L. Yin, Q. Lin and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
    [CrossRef] [PubMed]
  15. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  16. Q. Lin, J. Zhang, P. M. Fauchet and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14,4786-4799 (2006).
    [CrossRef] [PubMed]

2007

2006

2005

2004

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 m pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
[CrossRef] [PubMed]

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 m pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

2002

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Agrawal, G. P.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Boyraz, O.

Chen, X.

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Cowan, A. R.

Dadap, J. I.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Dekker, R.

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Driessen, A.

Dulkeith, E.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Fauchet, P. M.

Först, M.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Hsieh, I.

Indukuri, T.

Jalali, B.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Kawanishi, T.

Liang, T. K.

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, and M. Tsuchiya, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

McNab, S. J.

Moormann, C.

Niehusmann, J.

Nunes, L. R.

Osgood, R. M.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

Rieger, G. W.

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 m pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
[CrossRef] [PubMed]

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 m pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Sakamoto, T.

Sasagawa, K.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Soref, R.

R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678- 1687 (2006).
[CrossRef]

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Tsuchiya, M.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 m pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

Vlasov, Y. A.

Wahlbrink, T.

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Yin, L.

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 m pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 m pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
[CrossRef] [PubMed]

Zhang, J.

Appl. Phys. Lett.

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 m pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength,"Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Soref, "The Past, Present, and Future of Silicon Photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678- 1687 (2006).
[CrossRef]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Opt. Express

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 m pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
[CrossRef] [PubMed]

T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, and M. Tsuchiya, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14,4786-4799 (2006).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006).
[CrossRef] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 m femtosecond pulses," Opt. Express 14, 8336-8346 (2006).
[CrossRef] [PubMed]

I. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides," Opt. Express 14, 12380-12387 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Other

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Calculated dispersion curves for the TE and TM modes. The design of our waveguide is shown in the inset.

Fig. 2.
Fig. 2.

Schematic of our experimental setup. F-F coupler: free-space-to-fiber coupler, PC: polarization controller, LFT: lensed fiber taper, WG: waveguide.

Fig. 3.
Fig. 3.

Input (top) and output (bottom) pulse spectra measured at 1484 nm (blue curves) for an input pulse energy of 0.52 pJ. The green and red curves show the Gaussian and “sech” fits respectively to the data, as described in the text.

Fig. 4.
Fig. 4.

Input (top) and output (bottom) pulse spectra measured at 1249 nm (blue curves). Red curves show a Gaussian fit to the experimental data.

Fig. 5.
Fig. 5.

Simulated temporal shape (a) and spectrum (b) of input (blue curves) and output (red curves) pulses under experimental conditions of Fig. 3. The dotted curve in (a) shows the output pulse with negligible nonlinear effects. The dashed curve in (b) corresponds to a sech pulse.

Fig. 6.
Fig. 6.

Comparison between numerically simulated (red curve) and measured (blue curve) pulse spectra. Shape of the recorded spectrum agrees well with our numerical simulations. A slightly higher narrowing in the experimental is probably due to a small chirp on our input pulses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S input ( λ ) = S 0 exp [ ( λ λ c ) 2 2 σ 2 ]
S output ( λ ) = S 0 sech 2 [ ( λ λ c ) Δλ ]
A z + 1 2 αA i m = 2 8 i m β m m ! m A τ m = A 2 A ,

Metrics