Abstract

A robust wide band (850 nm) fiber coupler to a whispering-gallery cavity with ultra-high quality factor is experimentally demonstrated. The device trades off ideality for broad-band, efficient input coupling. Output coupling efficiency can remain high enough for practical applications wherein pumping and power extraction must occur over very broad wavelength spans.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes," Phys. Lett. A 137, 393-397 (1989).
    [CrossRef]
  2. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
    [CrossRef] [PubMed]
  3. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  4. V. S. Ilchenko, and A. B. Matsko, "Optical resonators with whispering-gallery modes - Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).
    [CrossRef]
  5. T. Carmon, and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third harmonic generation," Nat. Phys 3, 430-435 (2007).
    [CrossRef]
  6. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997).
    [CrossRef] [PubMed]
  7. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
    [CrossRef] [PubMed]
  8. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  9. M. L. Gorodetsky, and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999).
    [CrossRef]
  10. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, "Rayleigh scattering in high-Q microspheres," J. Opt. Soc. Am. B 17, 1051-1057 (2000).
    [CrossRef]
  11. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  12. All the way from being critically-coupled to touching the cavity
  13. When cavity-to-coupler distance is larger than the distance necessary for critical coupling
  14. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
    [CrossRef]
  15. Yet, one should calculate how wide is the band in which phase match is maintained in his specific configuration.</other>

2007 (1)

T. Carmon, and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third harmonic generation," Nat. Phys 3, 430-435 (2007).
[CrossRef]

2006 (1)

V. S. Ilchenko, and A. B. Matsko, "Optical resonators with whispering-gallery modes - Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).
[CrossRef]

2004 (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

2003 (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

2000 (2)

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, "Rayleigh scattering in high-Q microspheres," J. Opt. Soc. Am. B 17, 1051-1057 (2000).
[CrossRef]

1999 (1)

1997 (1)

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes," Phys. Lett. A 137, 393-397 (1989).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Birks, T. A.

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes," Phys. Lett. A 137, 393-397 (1989).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Carmon, T.

T. Carmon, and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third harmonic generation," Nat. Phys 3, 430-435 (2007).
[CrossRef]

Cheung, G.

Gorodetsky, M. L.

Ilchenko, V. S.

V. S. Ilchenko, and A. B. Matsko, "Optical resonators with whispering-gallery modes - Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).
[CrossRef]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, "Rayleigh scattering in high-Q microspheres," J. Opt. Soc. Am. B 17, 1051-1057 (2000).
[CrossRef]

M. L. Gorodetsky, and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999).
[CrossRef]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes," Phys. Lett. A 137, 393-397 (1989).
[CrossRef]

Jacques, F.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Knight, J. C.

Matsko, A. B.

V. S. Ilchenko, and A. B. Matsko, "Optical resonators with whispering-gallery modes - Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).
[CrossRef]

Painter, O.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Pryamikov, A. D.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Vahala, K. J.

T. Carmon, and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third harmonic generation," Nat. Phys 3, 430-435 (2007).
[CrossRef]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko, and A. B. Matsko, "Optical resonators with whispering-gallery modes - Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Phys (1)

T. Carmon, and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third harmonic generation," Nat. Phys 3, 430-435 (2007).
[CrossRef]

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes," Phys. Lett. A 137, 393-397 (1989).
[CrossRef]

Phys. Rev. B (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Other (4)

Yet, one should calculate how wide is the band in which phase match is maintained in his specific configuration.</other>

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

All the way from being critically-coupled to touching the cavity

When cavity-to-coupler distance is larger than the distance necessary for critical coupling

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Comparison between tapered-fiber coupler and bent taper coupler. (a) Schematic description. (b) Micrograph of the cavity and coupler region.

Fig. 2.
Fig. 2.

Comparison between tapered-fiber coupler and bent taper coupler, experimental results. (a) Coupling at IR (1540.2nm). (b) Coupling at visible (682.1nm). Insets describe the transmission in the under-coupled regime and are used for measuring the resonance width. The linewidth is narrow enough to resolve a fine splitting between the clockwise and counter clockwise modes.

Fig. 3.
Fig. 3.

Simultaneous coupling with bent coupler over 850nm span

Fig. 4.
Fig. 4.

Experimental measurement of the bent-coupler transmission Vs. coupling distance (squares); the line is a guide for the eye. Cavity external diameter is 32 μm with minor diameter of 6 μm, coupler outer diameter is 37 μm with minor diameter 3.5 μm. Optical quality factor is 22 million and wavelength is 1542.4 nm.

Metrics