Abstract

We study a whole compensation system for chromatic dispersion and polarization mode dispersion, including monitoring subsystems and compensation subsystems in optical communication systems with single channel speed 40Gbit/s and CSRZ format. We employed the spectral shift effect of a semiconductor optical amplifier for chromatic dispersion monitoring, and a non-linearly chirped fiber Bragg grating for chromatic dispersion compensation. The degree of polarization characterizes is used as feedback control signal of polarization mode dispersion monitoring, and a polarization controller and a polarization maintaining fiber are formed a polarization mode dispersion compensator. The transmission experiment demonstrates that the whole compensation system is effective. It is suit for chromatic dispersion management and polarization mode dispersion eliminating in optical communication systems with high single channel speed and CSRZ format.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminow and T. Li, Optical Telecommunications IV B Systems and Impairments (Academic, 2002)
  2. B. Fu and R. Hui, "Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection," IEEE Photon. Technol. Lett. 17, 1561-1563 (2005).
    [CrossRef]
  3. A. S. Lenihan, W. A. Babson, H. Jiao J. Sobieski, and G. M. Carter, "An experimental demonstration of a soft-failure approach to PMD mitigation in an installed optical link," Opt. Express 15, 24-32 (2007).
    [CrossRef] [PubMed]
  4. S. M. R. M. Nezam, "Chromatic and polarization mode dispersion monitoring for equalization in optical fiber communications," Dissertation of University of Southern California for PhD (2004).
  5. R. Wiesmann, O. Beck and H. Heppner, "Cost effective performance monitoring in WDM systems," in Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, 2000), 171-173.
  6. I. Shake, H. Takara, K. Uchiyama, and Y. Yamabayashi, "Quality monitoring of optical signals influence by chromatic dispersion in a transmission fiber using averaged Q-factor evaluation," IEEE Photonics Technology Letters 13, 385-387 (2001).
    [CrossRef]
  7. M. Tomizawa, Y. Yamabayashi, Y. Sato, and T. Kataoka, "Nonlinear influence on PM-AM conversion measurement of group velocity dispersion in optical fibers," Electron. Lett. 30, 1434-1435 (1994).
    [CrossRef]
  8. X. Yi, F. Buchali, W. Chen, W. Shieh, "Chromatic dispersion monitoring in electronic dispersion equalizers using tapped delay lines," Opt. Express 15, 312-315 (2007).
    [CrossRef] [PubMed]
  9. N. Liu, W. D. Zhong, Y. J. Wen, and Z. Li, "New transmitter configuration for subcarrier multiplexed DPSK systems and its applications to chromatic dispersion monitoring," Opt. Express 15, 839-844 (2007).
    [CrossRef]
  10. G. Ning, P. Shum, S. Aditya, N. Liu, Y. D. Gong, "On-line simultaneous monitoring of polarization and chromatic dispersion," Appl. Opt. 45, 2781-2785 (2006).
    [CrossRef] [PubMed]
  11. G. Ning, S. Aditya, P. Shum, H. Dong, C. Q. Wu, Y. and D. Gong, "New approach to determine the effects of polarization mode dispersion and chromatic dispersion on pulse and RF signals, " J. Opt. Soc. Am. A 23, 117-123 (2006).
    [CrossRef]
  12. A. Liu, G. J. Pendock, and R. S. Tucker, "Improved chromatic dispersion monitoring using single RF monitoring tone," Optics Express 14, 4611-4616 (2006).
    [CrossRef] [PubMed]
  13. T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
    [CrossRef]
  14. F. Buchali, W. Baumert, H. Bulow, and J. Poirrier, "A 40Gbit/s eye monitor and its application to adaptive PMD compensation," in Optical Fiber Communication Conference, Vol. 1 of 2002 OSA Technical Digest Series (Optical Society of America, 2002) 202-203.
  15. B. W. Hakki, "Polarization mode dispersion compensation by phase diversity detection," IEEE Photon. Technol. Lett. 9, 121-123 (1997).
    [CrossRef]
  16. L. Möller and L. Buhl, "Method for PMD vector monitoring in picosecond pulse transmission systems," IEEE J. Lightwave Technol. 19, 1125-1129 (2001).
    [CrossRef]
  17. N. Kikuchi, "Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation," IEEE J. Lightwave Technol. 19, 480-486 (2001).
    [CrossRef]
  18. K. Ennser, M. N. Zervas, and R. L. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
    [CrossRef]
  19. M. Shirasaki, "Chromatic dispersion compensator using virtually imaged phase array," IEEE Photon. Technol. Lett. 12, 1598-1600 (1997).
    [CrossRef]
  20. S. Yang. Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express 14, 3015-3023 (2006).
    [CrossRef] [PubMed]
  21. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual concentric core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006).
    [CrossRef] [PubMed]
  22. F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, " Theretical and experimental analysis of chromatic dispersion compensating module using dual concentric core fiber," IEEE J. Lightwave Technol. 24, 442-448 (2006).
    [CrossRef]
  23. P. J. Winzer and R. J. Essiambre, "Advanced optical modulation formats," Proceeding of the IEEE 94, 952-985 (2006).
    [CrossRef]
  24. G. Katz and D. Sadot, "Minimum BER criterion for electrical equalizer in optical communication system," IEEE J. Lightwave Technol. 24, 2844-2850 (2006).
    [CrossRef]
  25. O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," IEEE J. Lightwave Technol. 23, 749-763 (2005).
    [CrossRef]
  26. G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
    [CrossRef]
  27. L. He, Y. Zhang, S. Yang, X. Chen, and S. Xie, "Study of properties of highly birefringent microstructure fibers," Microwave Opt. Technol. Lett. 48, 940-944 (2006).
    [CrossRef]
  28. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic crystal fibres (Kluwer Academic Publishers, 2003).
    [CrossRef]
  29. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Thermally tunable dispersion compensator in 40Gb/s system using FBG fabricated with linearly chirped phase mask, " Opt. Express 14, 44-49 (2006).
    [CrossRef] [PubMed]
  30. D. Aizetta and M. Matsumoto, "Location optimization and distribution of polarization mode dispersion compensators using polarizers," J. Lightwave Technol. 22, 1014-1022 (2004).
    [CrossRef]
  31. Z. Q. Pan, "Overcoming fiber dispersion effects in high-speed reconfigurable wavelength division multiplexing optical communication systems and networks," Dissertation of University of Southern California for PhD (2003)

2007 (2)

2006 (10)

L. He, Y. Zhang, S. Yang, X. Chen, and S. Xie, "Study of properties of highly birefringent microstructure fibers," Microwave Opt. Technol. Lett. 48, 940-944 (2006).
[CrossRef]

A. Liu, G. J. Pendock, and R. S. Tucker, "Improved chromatic dispersion monitoring using single RF monitoring tone," Optics Express 14, 4611-4616 (2006).
[CrossRef] [PubMed]

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, " Theretical and experimental analysis of chromatic dispersion compensating module using dual concentric core fiber," IEEE J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

P. J. Winzer and R. J. Essiambre, "Advanced optical modulation formats," Proceeding of the IEEE 94, 952-985 (2006).
[CrossRef]

G. Katz and D. Sadot, "Minimum BER criterion for electrical equalizer in optical communication system," IEEE J. Lightwave Technol. 24, 2844-2850 (2006).
[CrossRef]

G. Ning, S. Aditya, P. Shum, H. Dong, C. Q. Wu, Y. and D. Gong, "New approach to determine the effects of polarization mode dispersion and chromatic dispersion on pulse and RF signals, " J. Opt. Soc. Am. A 23, 117-123 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Thermally tunable dispersion compensator in 40Gb/s system using FBG fabricated with linearly chirped phase mask, " Opt. Express 14, 44-49 (2006).
[CrossRef] [PubMed]

T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual concentric core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006).
[CrossRef] [PubMed]

S. Yang. Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express 14, 3015-3023 (2006).
[CrossRef] [PubMed]

G. Ning, P. Shum, S. Aditya, N. Liu, Y. D. Gong, "On-line simultaneous monitoring of polarization and chromatic dispersion," Appl. Opt. 45, 2781-2785 (2006).
[CrossRef] [PubMed]

2005 (2)

O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," IEEE J. Lightwave Technol. 23, 749-763 (2005).
[CrossRef]

B. Fu and R. Hui, "Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection," IEEE Photon. Technol. Lett. 17, 1561-1563 (2005).
[CrossRef]

2004 (2)

T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
[CrossRef]

D. Aizetta and M. Matsumoto, "Location optimization and distribution of polarization mode dispersion compensators using polarizers," J. Lightwave Technol. 22, 1014-1022 (2004).
[CrossRef]

2001 (3)

I. Shake, H. Takara, K. Uchiyama, and Y. Yamabayashi, "Quality monitoring of optical signals influence by chromatic dispersion in a transmission fiber using averaged Q-factor evaluation," IEEE Photonics Technology Letters 13, 385-387 (2001).
[CrossRef]

L. Möller and L. Buhl, "Method for PMD vector monitoring in picosecond pulse transmission systems," IEEE J. Lightwave Technol. 19, 1125-1129 (2001).
[CrossRef]

N. Kikuchi, "Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation," IEEE J. Lightwave Technol. 19, 480-486 (2001).
[CrossRef]

1998 (1)

K. Ennser, M. N. Zervas, and R. L. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

1997 (2)

M. Shirasaki, "Chromatic dispersion compensator using virtually imaged phase array," IEEE Photon. Technol. Lett. 12, 1598-1600 (1997).
[CrossRef]

B. W. Hakki, "Polarization mode dispersion compensation by phase diversity detection," IEEE Photon. Technol. Lett. 9, 121-123 (1997).
[CrossRef]

1994 (1)

M. Tomizawa, Y. Yamabayashi, Y. Sato, and T. Kataoka, "Nonlinear influence on PM-AM conversion measurement of group velocity dispersion in optical fibers," Electron. Lett. 30, 1434-1435 (1994).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Aditya, S.

Agazzi, O. E.

O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," IEEE J. Lightwave Technol. 23, 749-763 (2005).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Aizetta, D.

Auguste, J. L.

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, " Theretical and experimental analysis of chromatic dispersion compensating module using dual concentric core fiber," IEEE J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

Babson, W. A.

Blondy, J. M.

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, " Theretical and experimental analysis of chromatic dispersion compensating module using dual concentric core fiber," IEEE J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

Buchali, F.

Buhl, L.

L. Möller and L. Buhl, "Method for PMD vector monitoring in picosecond pulse transmission systems," IEEE J. Lightwave Technol. 19, 1125-1129 (2001).
[CrossRef]

Carrer, H. S.

O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," IEEE J. Lightwave Technol. 23, 749-763 (2005).
[CrossRef]

Chen, W.

Chen, X.

L. He, Y. Zhang, S. Yang, X. Chen, and S. Xie, "Study of properties of highly birefringent microstructure fibers," Microwave Opt. Technol. Lett. 48, 940-944 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Thermally tunable dispersion compensator in 40Gb/s system using FBG fabricated with linearly chirped phase mask, " Opt. Express 14, 44-49 (2006).
[CrossRef] [PubMed]

Crivelli, D. E.

O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," IEEE J. Lightwave Technol. 23, 749-763 (2005).
[CrossRef]

Dai, Y.

Dong, H.

Ennser, K.

K. Ennser, M. N. Zervas, and R. L. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

Essiambre, R. J.

P. J. Winzer and R. J. Essiambre, "Advanced optical modulation formats," Proceeding of the IEEE 94, 952-985 (2006).
[CrossRef]

Fu, B.

B. Fu and R. Hui, "Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection," IEEE Photon. Technol. Lett. 17, 1561-1563 (2005).
[CrossRef]

Fujisawa, T.

Gérôme, F.

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, " Theretical and experimental analysis of chromatic dispersion compensating module using dual concentric core fiber," IEEE J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

Gong, Y. D.

Hakki, B. W.

B. W. Hakki, "Polarization mode dispersion compensation by phase diversity detection," IEEE Photon. Technol. Lett. 9, 121-123 (1997).
[CrossRef]

He, L.

L. He, Y. Zhang, S. Yang, X. Chen, and S. Xie, "Study of properties of highly birefringent microstructure fibers," Microwave Opt. Technol. Lett. 48, 940-944 (2006).
[CrossRef]

Hueda, M. R.

O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," IEEE J. Lightwave Technol. 23, 749-763 (2005).
[CrossRef]

Hui, R.

B. Fu and R. Hui, "Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection," IEEE Photon. Technol. Lett. 17, 1561-1563 (2005).
[CrossRef]

Kataoka, T.

M. Tomizawa, Y. Yamabayashi, Y. Sato, and T. Kataoka, "Nonlinear influence on PM-AM conversion measurement of group velocity dispersion in optical fibers," Electron. Lett. 30, 1434-1435 (1994).
[CrossRef]

Katz, G.

G. Katz and D. Sadot, "Minimum BER criterion for electrical equalizer in optical communication system," IEEE J. Lightwave Technol. 24, 2844-2850 (2006).
[CrossRef]

Kikuchi, N.

N. Kikuchi, "Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation," IEEE J. Lightwave Technol. 19, 480-486 (2001).
[CrossRef]

Koshiba, M.

Laming, R. L.

K. Ennser, M. N. Zervas, and R. L. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

Lenihan, A. S.

Liu, A.

A. Liu, G. J. Pendock, and R. S. Tucker, "Improved chromatic dispersion monitoring using single RF monitoring tone," Optics Express 14, 4611-4616 (2006).
[CrossRef] [PubMed]

Liu, N.

Luo, T.

T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
[CrossRef]

Marcou, J.

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, " Theretical and experimental analysis of chromatic dispersion compensating module using dual concentric core fiber," IEEE J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

Matsumoto, M.

Maury, J.

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, " Theretical and experimental analysis of chromatic dispersion compensating module using dual concentric core fiber," IEEE J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

Möller, L.

L. Möller and L. Buhl, "Method for PMD vector monitoring in picosecond pulse transmission systems," IEEE J. Lightwave Technol. 19, 1125-1129 (2001).
[CrossRef]

Nezam, S. M. R. M.

T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
[CrossRef]

Ning, G.

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Pan, Z.

T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
[CrossRef]

Pendock, G. J.

A. Liu, G. J. Pendock, and R. S. Tucker, "Improved chromatic dispersion monitoring using single RF monitoring tone," Optics Express 14, 4611-4616 (2006).
[CrossRef] [PubMed]

Sadot, D.

G. Katz and D. Sadot, "Minimum BER criterion for electrical equalizer in optical communication system," IEEE J. Lightwave Technol. 24, 2844-2850 (2006).
[CrossRef]

Sahin, A. B.

T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
[CrossRef]

Saitoh, K.

Sato, Y.

M. Tomizawa, Y. Yamabayashi, Y. Sato, and T. Kataoka, "Nonlinear influence on PM-AM conversion measurement of group velocity dispersion in optical fibers," Electron. Lett. 30, 1434-1435 (1994).
[CrossRef]

Shake, I.

I. Shake, H. Takara, K. Uchiyama, and Y. Yamabayashi, "Quality monitoring of optical signals influence by chromatic dispersion in a transmission fiber using averaged Q-factor evaluation," IEEE Photonics Technology Letters 13, 385-387 (2001).
[CrossRef]

Shieh, W.

Shirasaki, M.

M. Shirasaki, "Chromatic dispersion compensator using virtually imaged phase array," IEEE Photon. Technol. Lett. 12, 1598-1600 (1997).
[CrossRef]

Shum, P.

Sun, J.

Takara, H.

I. Shake, H. Takara, K. Uchiyama, and Y. Yamabayashi, "Quality monitoring of optical signals influence by chromatic dispersion in a transmission fiber using averaged Q-factor evaluation," IEEE Photonics Technology Letters 13, 385-387 (2001).
[CrossRef]

Tomizawa, M.

M. Tomizawa, Y. Yamabayashi, Y. Sato, and T. Kataoka, "Nonlinear influence on PM-AM conversion measurement of group velocity dispersion in optical fibers," Electron. Lett. 30, 1434-1435 (1994).
[CrossRef]

Tucker, R. S.

A. Liu, G. J. Pendock, and R. S. Tucker, "Improved chromatic dispersion monitoring using single RF monitoring tone," Optics Express 14, 4611-4616 (2006).
[CrossRef] [PubMed]

Uchiyama, K.

I. Shake, H. Takara, K. Uchiyama, and Y. Yamabayashi, "Quality monitoring of optical signals influence by chromatic dispersion in a transmission fiber using averaged Q-factor evaluation," IEEE Photonics Technology Letters 13, 385-387 (2001).
[CrossRef]

Wada, K.

Willner, A. E.

T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
[CrossRef]

Winzer, P. J.

P. J. Winzer and R. J. Essiambre, "Advanced optical modulation formats," Proceeding of the IEEE 94, 952-985 (2006).
[CrossRef]

Wu, C. Q.

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Thermally tunable dispersion compensator in 40Gb/s system using FBG fabricated with linearly chirped phase mask, " Opt. Express 14, 44-49 (2006).
[CrossRef] [PubMed]

L. He, Y. Zhang, S. Yang, X. Chen, and S. Xie, "Study of properties of highly birefringent microstructure fibers," Microwave Opt. Technol. Lett. 48, 940-944 (2006).
[CrossRef]

Yamabayashi, Y.

I. Shake, H. Takara, K. Uchiyama, and Y. Yamabayashi, "Quality monitoring of optical signals influence by chromatic dispersion in a transmission fiber using averaged Q-factor evaluation," IEEE Photonics Technology Letters 13, 385-387 (2001).
[CrossRef]

M. Tomizawa, Y. Yamabayashi, Y. Sato, and T. Kataoka, "Nonlinear influence on PM-AM conversion measurement of group velocity dispersion in optical fibers," Electron. Lett. 30, 1434-1435 (1994).
[CrossRef]

Yan, L. S.

T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
[CrossRef]

Yang, S.

Yi, X.

Zervas, M. N.

K. Ennser, M. N. Zervas, and R. L. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

Zhang, Y.

L. He, Y. Zhang, S. Yang, X. Chen, and S. Xie, "Study of properties of highly birefringent microstructure fibers," Microwave Opt. Technol. Lett. 48, 940-944 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, "Thermally tunable dispersion compensator in 40Gb/s system using FBG fabricated with linearly chirped phase mask, " Opt. Express 14, 44-49 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Electron. Lett. (1)

M. Tomizawa, Y. Yamabayashi, Y. Sato, and T. Kataoka, "Nonlinear influence on PM-AM conversion measurement of group velocity dispersion in optical fibers," Electron. Lett. 30, 1434-1435 (1994).
[CrossRef]

IEEE J. Lightwave Technol. (5)

L. Möller and L. Buhl, "Method for PMD vector monitoring in picosecond pulse transmission systems," IEEE J. Lightwave Technol. 19, 1125-1129 (2001).
[CrossRef]

N. Kikuchi, "Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation," IEEE J. Lightwave Technol. 19, 480-486 (2001).
[CrossRef]

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, " Theretical and experimental analysis of chromatic dispersion compensating module using dual concentric core fiber," IEEE J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

G. Katz and D. Sadot, "Minimum BER criterion for electrical equalizer in optical communication system," IEEE J. Lightwave Technol. 24, 2844-2850 (2006).
[CrossRef]

O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," IEEE J. Lightwave Technol. 23, 749-763 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

K. Ennser, M. N. Zervas, and R. L. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Shirasaki, "Chromatic dispersion compensator using virtually imaged phase array," IEEE Photon. Technol. Lett. 12, 1598-1600 (1997).
[CrossRef]

T. Luo, Z. Pan, S. M. R. M. Nezam, L. S. Yan, A. B. Sahin, A. E. Willner, "PMD monitoring by tracking the chromatic-dispersion-insensitive RF power of the vestigial sideband," IEEE Photon. Technol. Lett. 16, 2177-2179 (2004).
[CrossRef]

B. Fu and R. Hui, "Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection," IEEE Photon. Technol. Lett. 17, 1561-1563 (2005).
[CrossRef]

B. W. Hakki, "Polarization mode dispersion compensation by phase diversity detection," IEEE Photon. Technol. Lett. 9, 121-123 (1997).
[CrossRef]

IEEE Photonics Technology Letters (1)

I. Shake, H. Takara, K. Uchiyama, and Y. Yamabayashi, "Quality monitoring of optical signals influence by chromatic dispersion in a transmission fiber using averaged Q-factor evaluation," IEEE Photonics Technology Letters 13, 385-387 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Microwave Opt. Technol. Lett. (1)

L. He, Y. Zhang, S. Yang, X. Chen, and S. Xie, "Study of properties of highly birefringent microstructure fibers," Microwave Opt. Technol. Lett. 48, 940-944 (2006).
[CrossRef]

Opt. Express (5)

Optics Express (1)

A. Liu, G. J. Pendock, and R. S. Tucker, "Improved chromatic dispersion monitoring using single RF monitoring tone," Optics Express 14, 4611-4616 (2006).
[CrossRef] [PubMed]

Proceeding of the IEEE (1)

P. J. Winzer and R. J. Essiambre, "Advanced optical modulation formats," Proceeding of the IEEE 94, 952-985 (2006).
[CrossRef]

Other (7)

F. Buchali, W. Baumert, H. Bulow, and J. Poirrier, "A 40Gbit/s eye monitor and its application to adaptive PMD compensation," in Optical Fiber Communication Conference, Vol. 1 of 2002 OSA Technical Digest Series (Optical Society of America, 2002) 202-203.

N. Liu, W. D. Zhong, Y. J. Wen, and Z. Li, "New transmitter configuration for subcarrier multiplexed DPSK systems and its applications to chromatic dispersion monitoring," Opt. Express 15, 839-844 (2007).
[CrossRef]

I. P. Kaminow and T. Li, Optical Telecommunications IV B Systems and Impairments (Academic, 2002)

S. M. R. M. Nezam, "Chromatic and polarization mode dispersion monitoring for equalization in optical fiber communications," Dissertation of University of Southern California for PhD (2004).

R. Wiesmann, O. Beck and H. Heppner, "Cost effective performance monitoring in WDM systems," in Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, 2000), 171-173.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic crystal fibres (Kluwer Academic Publishers, 2003).
[CrossRef]

Z. Q. Pan, "Overcoming fiber dispersion effects in high-speed reconfigurable wavelength division multiplexing optical communication systems and networks," Dissertation of University of Southern California for PhD (2003)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Chromatic dispersion monitoring subsystem

Fig. 2.
Fig. 2.

Back to back optical spectrum denoted by a) and amplified optical spectrum denoted by b) from the SOA of high speed optical communication system with single channel speed 40Gbit/s. The center wavelength is 1553.40nm. The shadow parts, marked by I, II and III, denote the pass-band of the three filters with different center wavelengths and with the same bandwidth 20GHz

Fig. 3.
Fig. 3.

Dispersion monitoring curves with filters which center wavelength are 1553.72nm (denoted by a) in the figure) and 1554.04nm (denoted by b) in the figure respectively. The bandwidth of the two filter based optical gratings are 20GHz.

Fig. 4.
Fig. 4.

PMD and chromatic dispersion compensation subsystems

Fig. 5.
Fig. 5.

Reflection spectrum a) and group delay b) curves of FBG and shift of group delay curve at various voltages

Fig. 6.
Fig. 6.

Experimental system for PMD and CD monitoring and compensation

Fig. 7.
Fig. 7.

Eye diagrams tested by Tektronix TDS8200 digital sampling oscilloscope of without CD and PMD compensation (a), with PMD compensation and without CD compensation (b) and with CD and PMD compensation (c).

Fig. 8.
Fig. 8.

BER curves of the CD and PMD monitoring and compensation system for 40Gbit/s CSRZ format high speed optical communication system

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DOP = S 1 2 + S 2 2 + S 3 3 S 0

Metrics