Abstract

We proposed and experimentally demonstrated 40-Gb/s quadrature phase-shifted keying (QPSK) and 20-Gb/s binary phase-shifted keying (PSK) transmission systems with inserted pilot symbols, using a return-to-zero radio frequency (RZ-RF) driving signal in the transmitter and self-homodyne direct detection in the receiver. Different from other existing homodyne or conventional differential PSK/QPSK systems, the proposed PSK and QPSK modulation formats do not need any complicated pre-coder, post-processor or local oscillator. In the proposed QPSK systems, simultaneous detection of in-phase and quadature components is successfully achieved by using one Mach-Zehnder delay interferometer and following balanced detector, which significantly reduces the system complexity and implementation cost.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Kikuchi, "Multilevel signalling for high-speed optical transmission," in Proceeding of European Conference on Optical Communication (ECOC), paper Tu3.2.1 (2006).
  2. K. Kikuchi, "Optical homodyne receiver comprising phase and polarization diversities with digital signal processing," in Proceeding of European Conference on Optical Communication (ECOC), paper Mo4.2.1 (2006).
  3. R. Noe, "Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery," J. Lightwave Technol. 23, 802-808 (2005).
    [CrossRef]
  4. Y. Kamio, T. Miyazaki, "Pilot-Symbol-Aided Self-Homodyne Detection for High-Efficiency Optical-Fiber Transmission System (invited)," in Proceedings of International Quantum Electronics Conference and the Pacific Rim Conference on Lasers and Electro-Optics (IQEC/CLEO-PR), 1571-1572 (2005).
  5. M. Daikoku, N. Yoshikane, and I. Morita, "Performance comparison of modulation formats for 40 Gbit/s DWDM transmission systems," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2005), paper OFN2.
  6. M. Daikoku, I. Morita, H. Taga, H. Tanaka, T. Kawanishi, T. Sakamoto, T. Miyazaki, T. Fujita, "100Gbit/s DQPSK Transmission Experiment without OTDM for 100G Ethernet Transport," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2006), paper PDP36.
  7. X. Liu, S. Chandrasekhar, A. H. Gnauck, C. R. Doerr, I. Kang, D. Kilper, L. L. Buhl, and J. Centanni, "DSP-enabled compensation of demodulator phase error and sensitivity improvement in direct-detection 40-Gb/s DQPSK," in Proceeding of European Conference on Optical Communication (ECOC), paper Th4.4.5 (2006).
  8. X. Liu, Y.-H. Kao, "Chirped RZ-DPSK based on single Mach-Zehnder modulator and its nonlinear transmission performance," IEEE Photon. Technol. Lett. 17, 1531-1533 (2005).
    [CrossRef]
  9. T. Kawanishi, T. Sakamoto, T. Miyazaki, M. Izutsu, T. Fujita, S. Mori, K. Higuma, and J. Ichikawa, "High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers," Opt. Express 14, 4469-4478 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

R. Noe, "Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery," J. Lightwave Technol. 23, 802-808 (2005).
[CrossRef]

X. Liu, Y.-H. Kao, "Chirped RZ-DPSK based on single Mach-Zehnder modulator and its nonlinear transmission performance," IEEE Photon. Technol. Lett. 17, 1531-1533 (2005).
[CrossRef]

Fujita, T.

Higuma, K.

Ichikawa, J.

Izutsu, M.

Kao, Y.-H.

X. Liu, Y.-H. Kao, "Chirped RZ-DPSK based on single Mach-Zehnder modulator and its nonlinear transmission performance," IEEE Photon. Technol. Lett. 17, 1531-1533 (2005).
[CrossRef]

Kawanishi, T.

Liu, X.

X. Liu, Y.-H. Kao, "Chirped RZ-DPSK based on single Mach-Zehnder modulator and its nonlinear transmission performance," IEEE Photon. Technol. Lett. 17, 1531-1533 (2005).
[CrossRef]

Miyazaki, T.

Mori, S.

Noe, R.

Sakamoto, T.

IEEE Photon. Technol. Lett. (1)

X. Liu, Y.-H. Kao, "Chirped RZ-DPSK based on single Mach-Zehnder modulator and its nonlinear transmission performance," IEEE Photon. Technol. Lett. 17, 1531-1533 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (6)

N. Kikuchi, "Multilevel signalling for high-speed optical transmission," in Proceeding of European Conference on Optical Communication (ECOC), paper Tu3.2.1 (2006).

K. Kikuchi, "Optical homodyne receiver comprising phase and polarization diversities with digital signal processing," in Proceeding of European Conference on Optical Communication (ECOC), paper Mo4.2.1 (2006).

Y. Kamio, T. Miyazaki, "Pilot-Symbol-Aided Self-Homodyne Detection for High-Efficiency Optical-Fiber Transmission System (invited)," in Proceedings of International Quantum Electronics Conference and the Pacific Rim Conference on Lasers and Electro-Optics (IQEC/CLEO-PR), 1571-1572 (2005).

M. Daikoku, N. Yoshikane, and I. Morita, "Performance comparison of modulation formats for 40 Gbit/s DWDM transmission systems," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2005), paper OFN2.

M. Daikoku, I. Morita, H. Taga, H. Tanaka, T. Kawanishi, T. Sakamoto, T. Miyazaki, T. Fujita, "100Gbit/s DQPSK Transmission Experiment without OTDM for 100G Ethernet Transport," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2006), paper PDP36.

X. Liu, S. Chandrasekhar, A. H. Gnauck, C. R. Doerr, I. Kang, D. Kilper, L. L. Buhl, and J. Centanni, "DSP-enabled compensation of demodulator phase error and sensitivity improvement in direct-detection 40-Gb/s DQPSK," in Proceeding of European Conference on Optical Communication (ECOC), paper Th4.4.5 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Operation principle of the proposed self-homodyne (i) PSK and (ii) QPSK systems.

Fig. 2.
Fig. 2.

Principle illustration of simultaneous detection of I and Q components of the proposed self-homodyne QPSK system.

Fig. 3.
Fig. 3.

Experimental setup of the proposed 40-Gb/s self-homodyne QPSK system.

Fig. 4.
Fig. 4.

Measured waveforms for the 20-Gb/s self-homodyne PSK system at the corresponding points in Fig. 1: (a) input 10-Gb/s CH1, (b) input 20-Gb/s CH1+CH2, (c) detected 20-Gb/s CH1+CH2, (d) detected 10-Gb/s CH1.

Fig. 5.
Fig. 5.

Eye diagrams of (a) 20-Gb/s PSK and (b) 40-Gb/s QPSK, where the I and Q components of two channels are indicated (10 ps/div).

Fig. 6.
Fig. 6.

BER performance measured at 10 Gb/s for the detected two channels of 40-Gb/s QPSK (I and Q components) and 20-Gb/s PSK systems.

Fig. 7.
Fig. 7.

Optical spectra of 20-Gb/s PSK and 40-Gb/s QPSK signals.

Fig. 8.
Fig. 8.

Dispersion tolerance investigation of 20-Gb/s PSK and 40-Gb/s QPSK signals.

Metrics