Abstract

Electro-optic modulation at λ= 1.5 μm has been demonstrated for the first time to the best of our knowledge in a ridge waveguide phase modulator produced in cubic potassium sodium tantalate niobate thin films epitaxially grown on potassium tantalate substrates exploiting the large quadratic electro-optic Kerr coefficient of R 11 = 8.2×10-17 m2/V2. The relative permittivity, Kerr coefficient, and refractive index have been evaluated for the thin film crystal and are compared to the values measured in bulk crystals. The half-wave voltage times length figure of merit of the modulator has been measured to be Vπl = 38 Vcm at room temperature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light modulation and beam deflection with potassium tantalate-niobate crystals," J. Appl. Phys. 37, 388 (1966).
    [CrossRef]
  2. S. Triebwasser, "Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3," Phys. Rev. 114, 63-70 (1959).
    [CrossRef]
  3. R. Gutmann, J. Hulliger, and H. Wuest, "Growth of paraelectric and ferroelectric epitaxial layers of KTa1-xNbxO3 by liquid-phase epitaxy," Ferroelectrics 134, 291-296 (1992).
    [CrossRef]
  4. R. Gutmann, J. Hulliger, and E. Reusser, "Liquid-phase epitaxy of lattice-matched KTa1-xNbxO3 grown on KTaO3 substrate," J. Cryst. Growth 126, 578-588 (1993).
    [CrossRef]
  5. H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, and P. Gunter, "New semiconducting substrate for heteroepitaxial growth of K1-yNayTa1-xNbxO3," Ferroelectrics 201, 269-275 (1997).
    [CrossRef]
  6. L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
    [CrossRef]
  7. S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
    [CrossRef]
  8. K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, "Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3," Appl. Phys. Lett. 89, 131115-1-131115-3 (2006).
  9. H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Harshavardhan, and L. A. Knauss, "Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film," Opt. Lett. 22, 1745-1747 (1997).
    [CrossRef]
  10. C. Herzog, S. Aravazhi, A. Guarino, A. Schneider, G. Poberaj, and P. Gunter, "Epitaxial K1-xNaxTa0.66Nb0.34O3 thin films for optical waveguiding applications," J. Opt. Soc. Am. B 24, 829-832 (2007).
    [CrossRef]
  11. R. Gutmann, "Liquid phase epitaxy of para- and ferroelectric KTa1-xNbxO3," Ph.D. dissertation (ETH Zurich No. 10095, 1993).
  12. C. Herzog, G. Poberaj, and P. Gunter, "Electro-optic behavior of lithium niobate at cryogenic temperatures," submitted to Opt. Commun. (2007).
  13. J. E. Geusic, S. K. Kurtz, L. G. Vanuitert, and S. H. Wemple, "Electro-optic properties of some ABO3 Perovskites in paraelectric phase," Appl. Phys. Lett. 4, 141 (1964).
    [CrossRef]
  14. K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp, and E. Kratzig, "Quadratic polarization-optic coefficients of cubic KTa11-xNbxO3 crystals," Opt. Commun. 131, 339-342 (1996).
    [CrossRef]
  15. http://www.c2v.nl/fr index.shtml?/products/software/olympios-software.shtml>
  16. K. Fujiura and K. Nakamura, "KTN optical waveguide devices with an extremely large electro-optic effect," Proc. SPIE 5623, 518-532 (2005). Conference on Passive Components and Fiber-based Devices NOV 09-11, 2004 Beijing, Peoples Republic China.
  17. T. Itoh, M. Sasaura, S. Toyoda, K. Manabe, K. Nakamura, and K. Fujiura, "High-frequency response of electrooptic single crystal KTaxNb1-xO3 in paraelectric phase," Conference on Lasers and Electro-Optics 2005, paper JTuC36, Baltimore, USA (May 2005).

2007 (1)

2004 (1)

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

1998 (1)

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

1997 (2)

H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, and P. Gunter, "New semiconducting substrate for heteroepitaxial growth of K1-yNayTa1-xNbxO3," Ferroelectrics 201, 269-275 (1997).
[CrossRef]

H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Harshavardhan, and L. A. Knauss, "Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film," Opt. Lett. 22, 1745-1747 (1997).
[CrossRef]

1996 (1)

K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp, and E. Kratzig, "Quadratic polarization-optic coefficients of cubic KTa11-xNbxO3 crystals," Opt. Commun. 131, 339-342 (1996).
[CrossRef]

1993 (1)

R. Gutmann, J. Hulliger, and E. Reusser, "Liquid-phase epitaxy of lattice-matched KTa1-xNbxO3 grown on KTaO3 substrate," J. Cryst. Growth 126, 578-588 (1993).
[CrossRef]

1992 (1)

R. Gutmann, J. Hulliger, and H. Wuest, "Growth of paraelectric and ferroelectric epitaxial layers of KTa1-xNbxO3 by liquid-phase epitaxy," Ferroelectrics 134, 291-296 (1992).
[CrossRef]

1966 (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light modulation and beam deflection with potassium tantalate-niobate crystals," J. Appl. Phys. 37, 388 (1966).
[CrossRef]

1964 (1)

J. E. Geusic, S. K. Kurtz, L. G. Vanuitert, and S. H. Wemple, "Electro-optic properties of some ABO3 Perovskites in paraelectric phase," Appl. Phys. Lett. 4, 141 (1964).
[CrossRef]

1959 (1)

S. Triebwasser, "Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3," Phys. Rev. 114, 63-70 (1959).
[CrossRef]

Aravazhi, S.

Buse, K.

K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp, and E. Kratzig, "Quadratic polarization-optic coefficients of cubic KTa11-xNbxO3 crystals," Opt. Commun. 131, 339-342 (1996).
[CrossRef]

Chen, F. S.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light modulation and beam deflection with potassium tantalate-niobate crystals," J. Appl. Phys. 37, 388 (1966).
[CrossRef]

Christen, H. M.

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

Enbutsu, K.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Fujiura, K.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Fushimi, H.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Geusic, J. E.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light modulation and beam deflection with potassium tantalate-niobate crystals," J. Appl. Phys. 37, 388 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Vanuitert, and S. H. Wemple, "Electro-optic properties of some ABO3 Perovskites in paraelectric phase," Appl. Phys. Lett. 4, 141 (1964).
[CrossRef]

Gitmans, F.

H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, and P. Gunter, "New semiconducting substrate for heteroepitaxial growth of K1-yNayTa1-xNbxO3," Ferroelectrics 201, 269-275 (1997).
[CrossRef]

Glabasnia, L.

K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp, and E. Kratzig, "Quadratic polarization-optic coefficients of cubic KTa11-xNbxO3 crystals," Opt. Commun. 131, 339-342 (1996).
[CrossRef]

Grabowski, K. S.

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

Guarino, A.

Gunter, P.

C. Herzog, S. Aravazhi, A. Guarino, A. Schneider, G. Poberaj, and P. Gunter, "Epitaxial K1-xNaxTa0.66Nb0.34O3 thin films for optical waveguiding applications," J. Opt. Soc. Am. B 24, 829-832 (2007).
[CrossRef]

H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, and P. Gunter, "New semiconducting substrate for heteroepitaxial growth of K1-yNayTa1-xNbxO3," Ferroelectrics 201, 269-275 (1997).
[CrossRef]

Gutmann, R.

R. Gutmann, J. Hulliger, and E. Reusser, "Liquid-phase epitaxy of lattice-matched KTa1-xNbxO3 grown on KTaO3 substrate," J. Cryst. Growth 126, 578-588 (1993).
[CrossRef]

R. Gutmann, J. Hulliger, and H. Wuest, "Growth of paraelectric and ferroelectric epitaxial layers of KTa1-xNbxO3 by liquid-phase epitaxy," Ferroelectrics 134, 291-296 (1992).
[CrossRef]

Harshavardhan, K. S.

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Harshavardhan, and L. A. Knauss, "Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film," Opt. Lett. 22, 1745-1747 (1997).
[CrossRef]

Havermeyer, F.

K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp, and E. Kratzig, "Quadratic polarization-optic coefficients of cubic KTa11-xNbxO3 crystals," Opt. Commun. 131, 339-342 (1996).
[CrossRef]

He, X. H.

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Harshavardhan, and L. A. Knauss, "Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film," Opt. Lett. 22, 1745-1747 (1997).
[CrossRef]

Herzog, C.

Hulliger, J.

R. Gutmann, J. Hulliger, and E. Reusser, "Liquid-phase epitaxy of lattice-matched KTa1-xNbxO3 grown on KTaO3 substrate," J. Cryst. Growth 126, 578-588 (1993).
[CrossRef]

R. Gutmann, J. Hulliger, and H. Wuest, "Growth of paraelectric and ferroelectric epitaxial layers of KTa1-xNbxO3 by liquid-phase epitaxy," Ferroelectrics 134, 291-296 (1992).
[CrossRef]

Imai, T.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Knauss, L. A.

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Harshavardhan, and L. A. Knauss, "Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film," Opt. Lett. 22, 1745-1747 (1997).
[CrossRef]

Knies, D. L.

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

Kratzig, E.

K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp, and E. Kratzig, "Quadratic polarization-optic coefficients of cubic KTa11-xNbxO3 crystals," Opt. Commun. 131, 339-342 (1996).
[CrossRef]

Kurihara, T.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Kurtz, S. K.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light modulation and beam deflection with potassium tantalate-niobate crystals," J. Appl. Phys. 37, 388 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Vanuitert, and S. H. Wemple, "Electro-optic properties of some ABO3 Perovskites in paraelectric phase," Appl. Phys. Lett. 4, 141 (1964).
[CrossRef]

Manabe, K.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Matsuura, T.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Pierhofer, H.

H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, and P. Gunter, "New semiconducting substrate for heteroepitaxial growth of K1-yNayTa1-xNbxO3," Ferroelectrics 201, 269-275 (1997).
[CrossRef]

Poberaj, G.

Reusser, E.

R. Gutmann, J. Hulliger, and E. Reusser, "Liquid-phase epitaxy of lattice-matched KTa1-xNbxO3 grown on KTaO3 substrate," J. Cryst. Growth 126, 578-588 (1993).
[CrossRef]

Sasaura, M.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Schlomp, K.

K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp, and E. Kratzig, "Quadratic polarization-optic coefficients of cubic KTa11-xNbxO3 crystals," Opt. Commun. 131, 339-342 (1996).
[CrossRef]

Schneider, A.

Shih, Y. H.

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Harshavardhan, and L. A. Knauss, "Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film," Opt. Lett. 22, 1745-1747 (1997).
[CrossRef]

Shimokozono, M.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Sitar, Z.

H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, and P. Gunter, "New semiconducting substrate for heteroepitaxial growth of K1-yNayTa1-xNbxO3," Ferroelectrics 201, 269-275 (1997).
[CrossRef]

Skinner, J. G.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light modulation and beam deflection with potassium tantalate-niobate crystals," J. Appl. Phys. 37, 388 (1966).
[CrossRef]

Tate, A.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Toyoda, S.

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Triebwasser, S.

S. Triebwasser, "Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3," Phys. Rev. 114, 63-70 (1959).
[CrossRef]

Vanuitert, L. G.

J. E. Geusic, S. K. Kurtz, L. G. Vanuitert, and S. H. Wemple, "Electro-optic properties of some ABO3 Perovskites in paraelectric phase," Appl. Phys. Lett. 4, 141 (1964).
[CrossRef]

Wemple, S. H.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light modulation and beam deflection with potassium tantalate-niobate crystals," J. Appl. Phys. 37, 388 (1966).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Vanuitert, and S. H. Wemple, "Electro-optic properties of some ABO3 Perovskites in paraelectric phase," Appl. Phys. Lett. 4, 141 (1964).
[CrossRef]

Wuest, H.

H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, and P. Gunter, "New semiconducting substrate for heteroepitaxial growth of K1-yNayTa1-xNbxO3," Ferroelectrics 201, 269-275 (1997).
[CrossRef]

R. Gutmann, J. Hulliger, and H. Wuest, "Growth of paraelectric and ferroelectric epitaxial layers of KTa1-xNbxO3 by liquid-phase epitaxy," Ferroelectrics 134, 291-296 (1992).
[CrossRef]

Zhang, H. Y.

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Harshavardhan, and L. A. Knauss, "Optical and nonlinear optical study of KTa0.52Nb0.48O3 epitaxial film," Opt. Lett. 22, 1745-1747 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

L. A. Knauss, K. S. Harshavardhan, H. M. Christen, H. Y. Zhang, X. H. He, Y. H. Shih, K. S. Grabowski, and D. L. Knies, "Growth of nonlinear optical thin films of KTa1-xNbxO3 on GaAs by pulsed laser deposition for integrated optics," Appl. Phys. Lett. 73, 3806-3808 (1998).
[CrossRef]

J. E. Geusic, S. K. Kurtz, L. G. Vanuitert, and S. H. Wemple, "Electro-optic properties of some ABO3 Perovskites in paraelectric phase," Appl. Phys. Lett. 4, 141 (1964).
[CrossRef]

Ferroelectrics (2)

H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, and P. Gunter, "New semiconducting substrate for heteroepitaxial growth of K1-yNayTa1-xNbxO3," Ferroelectrics 201, 269-275 (1997).
[CrossRef]

R. Gutmann, J. Hulliger, and H. Wuest, "Growth of paraelectric and ferroelectric epitaxial layers of KTa1-xNbxO3 by liquid-phase epitaxy," Ferroelectrics 134, 291-296 (1992).
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light modulation and beam deflection with potassium tantalate-niobate crystals," J. Appl. Phys. 37, 388 (1966).
[CrossRef]

J. Cryst. Growth (1)

R. Gutmann, J. Hulliger, and E. Reusser, "Liquid-phase epitaxy of lattice-matched KTa1-xNbxO3 grown on KTaO3 substrate," J. Cryst. Growth 126, 578-588 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Toyoda, K. Fujiura, M. Sasaura, K. Enbutsu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, and T. Kurihara, "Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides," Jpn. J. Appl. Phys. 43, 5862-5866 (2004).
[CrossRef]

Opt. Commun. (1)

K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp, and E. Kratzig, "Quadratic polarization-optic coefficients of cubic KTa11-xNbxO3 crystals," Opt. Commun. 131, 339-342 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

S. Triebwasser, "Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3," Phys. Rev. 114, 63-70 (1959).
[CrossRef]

Other (6)

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, "Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3," Appl. Phys. Lett. 89, 131115-1-131115-3 (2006).

R. Gutmann, "Liquid phase epitaxy of para- and ferroelectric KTa1-xNbxO3," Ph.D. dissertation (ETH Zurich No. 10095, 1993).

C. Herzog, G. Poberaj, and P. Gunter, "Electro-optic behavior of lithium niobate at cryogenic temperatures," submitted to Opt. Commun. (2007).

http://www.c2v.nl/fr index.shtml?/products/software/olympios-software.shtml>

K. Fujiura and K. Nakamura, "KTN optical waveguide devices with an extremely large electro-optic effect," Proc. SPIE 5623, 518-532 (2005). Conference on Passive Components and Fiber-based Devices NOV 09-11, 2004 Beijing, Peoples Republic China.

T. Itoh, M. Sasaura, S. Toyoda, K. Manabe, K. Nakamura, and K. Fujiura, "High-frequency response of electrooptic single crystal KTaxNb1-xO3 in paraelectric phase," Conference on Lasers and Electro-Optics 2005, paper JTuC36, Baltimore, USA (May 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Relative permittivity of potassium sodium niobate tantalate thin film epitaxially grown on potassium tantalate substrate as a function of temperature and frequency. Black curve shows improved material quality of present film compared to the one from our previous study[10] (gray curve).

Fig. 2.
Fig. 2.

Cryostatic interferometer setup to measure the quadratic electro-optic coefficient R 11 of potassium sodium niobate tantalate bulk crystals. Low-frequency phase oscillations are compensated by an active phase control.

Fig. 3.
Fig. 3.

Quadratic electro-optic Kerr coefficient R 11 of potassium sodium niobate tantalate bulk crystal as a function of temperature. Black points represent values measured by the interferometer setup, solid black curve indicates Curie-Weiss law and solid gray curve represents R 11 calculated from dielectric permittivity data.

Fig. 4.
Fig. 4.

Waveguide profile and TE mode intensity distribution of λ = 1579 nm laser light propagating in a potassium sodium niobate tantalate thin film ridge waveguide. Left inset shows simulated mode profile with excellent agreement to measurement.

Fig. 5.
Fig. 5.

Measured light intensity (gray circles) along a vertical (y) cross section of potassium sodium niobate tantalate thin film ridge waveguide on potassium tantalate substrate. Solid curve represents the best-fitting theoretical solution of the Helmholtz equation with thin film thickness d = 3.4 ±0.1 μm and refractive index contrast Δn = (11.0±1.5) × 10-3.

Fig. 6.
Fig. 6.

Refractive index dispersion of bulk potassium tantalate (light gray solid curve), bulk potassium sodium niobate tantalate (dark gray solid curve), and epitaxial potassium sodium niobate tantalate thin film (solitary points). The thin film refractive index at λ = 1579 nm is almost equal to the bulk value. All values measured at room temperature.

Fig. 7.
Fig. 7.

Measured scattered light intensity at λ = 633 nm (gray curve) along propagation in potassium sodium niobate tantalate thin film ridge waveguide on potassium tantalate substrate. Exponential decay fit yields propagation losses of 7.8±0.5 dB/cm (black curve).

Fig. 8.
Fig. 8.

Schematic of the setup used to characterize the potassium sodium niobate tantalate thin film ridge waveguide phase modulator working at λ= 1550 nm.

Fig. 9.
Fig. 9.

Transmitted light intensity (y-axis) at λ = 1550 nm in potassium sodium niobate tantalate thin film ridge waveguide phase modulator as a function of DC voltage applied to parallel side electrodes (x-axis). Graph shows a half wave voltage of Vπ ≈ 100 V.

Fig. 10.
Fig. 10.

Electro-optic modulation at f = 10 MHz in potassium sodium niobate tantalate thin film ridge waveguide phase modulator. Upper curve shows voltage applied to the side electrodes in units of half-wave voltage, lower curve shows detected light intensity.

Fig. 11.
Fig. 11.

Existing (a) and suggested (b) waveguide geometries to significantly reduce half-wave voltage in potassium sodium niobate tantalate thin film ridge waveguide phase modulator. Placing the electrodes on the thin film instead of on the substrate increases the electric field in the waveguide core by a factor of seven.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε = C T T 0 ,
R = ε 0 2 ( ε 1 ) 2 g ,
R 11 = ε 0 2 C 2 ( T T 0 ) 2 g 11 .
R 11 E x 2 R 12 E y 2 = λ n 3 l ,
R 11 = λ n 3 E x 2 l .
ε = ( R 11 ε 0 2 g 11 ) 1 2 ,

Metrics