Abstract

We investigate the dynamical response of a quantum dot photonic integrated circuit formed with a combination of eleven passive and active gain cells operating when these cells are appropriately biased as a multi-section quantum dot passively mode-locked laser. When the absorber section is judiciously positioned in the laser cavity then fundamental frequency and harmonic mode-locking at repetition rates from 7.2GHz to 51GHz are recorded. These carefully engineered multi-section configurations that include a passive wave-guide section significantly lower the pulse width up to 34% from 9.7 to 6.4 picoseconds, as well increase by 49% the peak pulsed power from 150 to 224 mW, in comparison to conventional two-section configurations that are formed on the identical device under the same average power. In addition an ultra broad operation range with pulse width below ten picoseconds is obtained with the 3rd-harmonic mode-locking configuration. A record peak power of 234 mW for quantum dot mode-locked lasers operating over 40 GHz is reported for the first time.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proceedings of the IEEE 88, 728-749 (2000).
  2. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
    [CrossRef]
  3. K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
    [CrossRef]
  4. L. Zhang, L. Cheng, A. L. Gray, S. Luong, J. Nagyvary, F. Nabulsi, L. Olona, K. Su, T. Tumolillo, R Wang, C. Wiggins, J. Ziko, Z. Zau, P. M. Varangis, H. Su, and L. F. Lester, "5 GHz optical pulses from a monolithic two-section passively mode-locked 1250/1310 nm quantum dot laser for high speed optical interconnects," Optical Fiber Communication Conference. Technical Digest. OFC/NFOEC 3, (2005).
    [CrossRef]
  5. X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
    [CrossRef]
  6. X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
    [CrossRef]
  7. R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl. Phys. Lett. 78, 1207-1209 (2001).
    [CrossRef]
  8. M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
    [CrossRef]
  9. A. R. Rae, M. G. Thompson, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, "Harmonic mode-locking of a quantum-dot laser diode," 874-875, (2006) IEEE LEOS Annual Meeting.
    [CrossRef]
  10. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
    [CrossRef]
  11. H. A. Haus and Y. Silberberg, "Theory of mode-locking of a Laser Diode with a multiple-quantum-well structure," J. Opt. Soc. Am. B 2, 1237-1243 (1985).
    [CrossRef]
  12. G. New, "Pulse evolution in mode-locked quasi-continuous lasers," IEEE J. Quantum Electron. 10, 115-124 (1974).
    [CrossRef]
  13. E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, "Model for mode locking in quantum dot lasers," Appl. Phys. Lett. 88, 201102 (2006).
    [CrossRef]
  14. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
    [CrossRef]
  15. K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of Semiconductor-Lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
    [CrossRef]
  16. J. Palaski and K. Y. Lau, "Parameter ranges for ultrahigh frequency mode-locking of semiconductor-lasers," Appl. Phys. Lett. 59, 7-9 (1991).
    [CrossRef]
  17. H. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976).
    [CrossRef]
  18. P. Vasilev, Ultrafast diode lasers Fundamentals and applications, (Artech House, Boston, 1995), Chap. 4.
  19. R. G. M. P. Koumans and R. vanRoijen, "Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion, and pulse collisions," IEEE J. Quantum Electron. 32, 478-492 (1996).
    [CrossRef]
  20. K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
    [CrossRef]
  21. P. Blood, H. Pask, I. Sandall, and H. Summers, "Recombination in quantum dot ensembles," Proc. SPIE 64850J, Novel in-Plane Semiconductor Lasers VI 6485, (2007).
  22. Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
    [CrossRef]
  23. M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
    [CrossRef] [PubMed]
  24. D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
    [CrossRef]
  25. T. Shimizu, X. L. Wang, and H. Yokoyama, "Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers," Opt. Rev. 2, 401-403 (1995).
    [CrossRef]
  26. T. Shimizu, I. Ogura, and H. Yokoyama, "860 GHz rate asymmetric colliding pulse modelocked diode lasers," Electron. Lett. 33, 1868-1869 (1997).
    [CrossRef]
  27. G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electron. Lett. 35, 1163-1165 (1999).
    [CrossRef]
  28. A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
    [CrossRef]
  29. S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
    [CrossRef]
  30. K. Y. Lau, "Short-pulse and high-frequency signal generation in semiconductor-lasers," J. Lightwave Technol. 7, 400-419 (1989).
    [CrossRef]
  31. Y. Liu, Z. Wang, M. Han, S. Fan, and R. Dutton, "Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides," Opt. Express 13, 4539-4553 (2005).
    [CrossRef] [PubMed]
  32. F. Y. Lin and H. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
    [CrossRef]

2007 (2)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, "Model for mode locking in quantum dot lasers," Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

2005 (2)

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Y. Liu, Z. Wang, M. Han, S. Fan, and R. Dutton, "Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides," Opt. Express 13, 4539-4553 (2005).
[CrossRef] [PubMed]

2004 (4)

F. Y. Lin and H. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
[CrossRef]

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

2003 (1)

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

2001 (3)

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl. Phys. Lett. 78, 1207-1209 (2001).
[CrossRef]

2000 (3)

H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proceedings of the IEEE 88, 728-749 (2000).

A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
[CrossRef]

1999 (1)

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electron. Lett. 35, 1163-1165 (1999).
[CrossRef]

1997 (1)

T. Shimizu, I. Ogura, and H. Yokoyama, "860 GHz rate asymmetric colliding pulse modelocked diode lasers," Electron. Lett. 33, 1868-1869 (1997).
[CrossRef]

1996 (1)

R. G. M. P. Koumans and R. vanRoijen, "Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion, and pulse collisions," IEEE J. Quantum Electron. 32, 478-492 (1996).
[CrossRef]

1995 (1)

T. Shimizu, X. L. Wang, and H. Yokoyama, "Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers," Opt. Rev. 2, 401-403 (1995).
[CrossRef]

1992 (1)

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

1991 (2)

K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of Semiconductor-Lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
[CrossRef]

J. Palaski and K. Y. Lau, "Parameter ranges for ultrahigh frequency mode-locking of semiconductor-lasers," Appl. Phys. Lett. 59, 7-9 (1991).
[CrossRef]

1989 (1)

K. Y. Lau, "Short-pulse and high-frequency signal generation in semiconductor-lasers," J. Lightwave Technol. 7, 400-419 (1989).
[CrossRef]

1985 (1)

1976 (1)

H. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976).
[CrossRef]

1974 (1)

G. New, "Pulse evolution in mode-locked quasi-continuous lasers," IEEE J. Quantum Electron. 10, 115-124 (1974).
[CrossRef]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Agarwal, D.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

Bandelow, U.

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, "Model for mode locking in quantum dot lasers," Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

Barbarin, Y.

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

Bente, E. A. J. M.

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

Beri, S.

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

Bhatnagar, A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

Bimberg, D.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl. Phys. Lett. 78, 1207-1209 (2001).
[CrossRef]

Blood, P.

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

Bowers, J. E.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Cheng, J.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

Christiansen, L. J.

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Debaes, C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

Delgado, S. M.

A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
[CrossRef]

Derickson, D. J.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Duan, G. H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Dutton, R.

Fan, S.

Fiol, G.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Gray, A. L.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
[CrossRef]

Grundmann, M.

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl. Phys. Lett. 78, 1207-1209 (2001).
[CrossRef]

Han, M.

Hanberg, J.

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Haus, H.

H. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976).
[CrossRef]

Haus, H. A.

Helkey, R. J.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

Helman, N. C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

Huang, X. D.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

Huffaker, D.

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

Hvam, J. M.

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Karin, J. R.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

Keeler, G. A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

Koumans, R. G. M. P.

R. G. M. P. Koumans and R. vanRoijen, "Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion, and pulse collisions," IEEE J. Quantum Electron. 32, 478-492 (1996).
[CrossRef]

Kovsh, A. R.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Kuntz, M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Lammlin, M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Larsson, D.

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Lau, K. Y.

J. Palaski and K. Y. Lau, "Parameter ranges for ultrahigh frequency mode-locking of semiconductor-lasers," Appl. Phys. Lett. 59, 7-9 (1991).
[CrossRef]

K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of Semiconductor-Lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
[CrossRef]

K. Y. Lau, "Short-pulse and high-frequency signal generation in semiconductor-lasers," J. Lightwave Technol. 7, 400-419 (1989).
[CrossRef]

Le Gouezigou, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Ledentsov, N. N.

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl. Phys. Lett. 78, 1207-1209 (2001).
[CrossRef]

Lelarge, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Lenstra, D.

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

Lester, L. F.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electron. Lett. 35, 1163-1165 (1999).
[CrossRef]

Li, H.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electron. Lett. 35, 1163-1165 (1999).
[CrossRef]

Li, Y.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Lin, F. Y.

F. Y. Lin and H. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
[CrossRef]

Liu, G. T.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electron. Lett. 35, 1163-1165 (1999).
[CrossRef]

Liu, H. M.

F. Y. Lin and H. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
[CrossRef]

Liu, Y.

Luong, S.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Malloy, K. J.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electron. Lett. 35, 1163-1165 (1999).
[CrossRef]

Mandel, P.

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, "Model for mode locking in quantum dot lasers," Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

Mar, A.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

Marinelli, C.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Martinez, A.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Miller, D. A. B.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proceedings of the IEEE 88, 728-749 (2000).

Mork, J.

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Nelson, B. E.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

New, G.

G. New, "Pulse evolution in mode-locked quasi-continuous lasers," IEEE J. Quantum Electron. 10, 115-124 (1974).
[CrossRef]

Notzel, R.

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

Ogura, I.

T. Shimizu, I. Ogura, and H. Yokoyama, "860 GHz rate asymmetric colliding pulse modelocked diode lasers," Electron. Lett. 33, 1868-1869 (1997).
[CrossRef]

Osborne, S. W.

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

Oxenlowe, L. K.

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Palaski, J.

J. Palaski and K. Y. Lau, "Parameter ranges for ultrahigh frequency mode-locking of semiconductor-lasers," Appl. Phys. Lett. 59, 7-9 (1991).
[CrossRef]

Paslaski, J.

K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of Semiconductor-Lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
[CrossRef]

Penty, R. V.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Provost, J. G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Ribbat, C.

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl. Phys. Lett. 78, 1207-1209 (2001).
[CrossRef]

Rice, A.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

Rotter, T. J.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

Sellin, R. L.

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl. Phys. Lett. 78, 1207-1209 (2001).
[CrossRef]

Shernyakov, Y. M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Shimizu, T.

T. Shimizu, I. Ogura, and H. Yokoyama, "860 GHz rate asymmetric colliding pulse modelocked diode lasers," Electron. Lett. 33, 1868-1869 (1997).
[CrossRef]

T. Shimizu, X. L. Wang, and H. Yokoyama, "Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers," Opt. Rev. 2, 401-403 (1995).
[CrossRef]

Silberberg, Y.

Smit, M. K.

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

Smowton, P. M.

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

Spillers, R.

A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
[CrossRef]

Stintz, A.

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electron. Lett. 35, 1163-1165 (1999).
[CrossRef]

Su, H.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Sun, K.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Tan, K. T.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Thompson, M. G.

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Ustinov, V. M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

van Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

vanRoijen, R.

R. G. M. P. Koumans and R. vanRoijen, "Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion, and pulse collisions," IEEE J. Quantum Electron. 32, 478-492 (1996).
[CrossRef]

Varangis, P. M.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Viktorov, E. A.

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, "Model for mode locking in quantum dot lasers," Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

Vladimirov, A. G.

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, "Model for mode locking in quantum dot lasers," Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

Wang, X. L.

T. Shimizu, X. L. Wang, and H. Yokoyama, "Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers," Opt. Rev. 2, 401-403 (1995).
[CrossRef]

Wang, Z.

Wasserbauer, J. G.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

White, I. H.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

Xin, Y. C.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

Yokoyama, H.

T. Shimizu, I. Ogura, and H. Yokoyama, "860 GHz rate asymmetric colliding pulse modelocked diode lasers," Electron. Lett. 33, 1868-1869 (1997).
[CrossRef]

T. Shimizu, X. L. Wang, and H. Yokoyama, "Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers," Opt. Rev. 2, 401-403 (1995).
[CrossRef]

Yousefi, M.

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

Yvind, K.

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Zhang, L.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Zhukov, A. E.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

Zilko, J.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Zou, Z.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, "Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers," Appl. Phys. Lett. 78, 2825-2827 (2001).
[CrossRef]

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl. Phys. Lett. 78, 1207-1209 (2001).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, "35 GHz mode-locking of 1.3μm quantum dot lasers," Appl. Phys. Lett. 85, 843-845 (2004).
[CrossRef]

E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, "Model for mode locking in quantum dot lasers," Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

J. Palaski and K. Y. Lau, "Parameter ranges for ultrahigh frequency mode-locking of semiconductor-lasers," Appl. Phys. Lett. 59, 7-9 (1991).
[CrossRef]

Electron. Lett. (2)

T. Shimizu, I. Ogura, and H. Yokoyama, "860 GHz rate asymmetric colliding pulse modelocked diode lasers," Electron. Lett. 33, 1868-1869 (1997).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, "Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well," Electron. Lett. 35, 1163-1165 (1999).
[CrossRef]

IEEE J. Quantum Electron. (7)

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, "Optical gain and absorption of quantum dots measured using an alternative segmented contact method," IEEE J. Quantum Electron. 42, 725-732 (2006).
[CrossRef]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor-lasers," IEEE J. Quantum Electron. 28, 2186-2202 (1992).
[CrossRef]

F. Y. Lin and H. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
[CrossRef]

H. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12, 169-176 (1976).
[CrossRef]

R. G. M. P. Koumans and R. vanRoijen, "Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion, and pulse collisions," IEEE J. Quantum Electron. 32, 478-492 (1996).
[CrossRef]

G. New, "Pulse evolution in mode-locked quasi-continuous lasers," IEEE J. Quantum Electron. 10, 115-124 (1974).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, "Bistable operation of a two-section 1.3-μm InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect," IEEE J. Quantum Electron. 37, 414-417 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, "The benefits of ultrashort optical pulses in optically interconnected systems," IEEE J. Sel. Top. Quantum Electron. 9, 477-485 (2003).
[CrossRef]

H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Y. Lau and J. Paslaski, "Condition for short pulse generation in ultrahigh frequency mode-locking of Semiconductor-Lasers," IEEE Photon. Technol. Lett. 3, 974-976 (1991).
[CrossRef]

J. Lightwave Technol. (1)

K. Y. Lau, "Short-pulse and high-frequency signal generation in semiconductor-lasers," J. Lightwave Technol. 7, 400-419 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens Matter (1)

S. W. Osborne, P. Blood, P. M. Smowton, Y. C. Xin, A. Stintz, D. Huffaker, and L. F. Lester, "Optical absorption cross section of quantum dots," J. Phys. Condens Matter 16, S3749-S3756 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. Stintz, G. T. Liu, A. L. Gray, R. Spillers, S. M. Delgado, and K. J. Malloy, "Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells," J. Vac. Sci. Technol. B 18, 1496-1501 (2000).
[CrossRef]

New J. Phys. (1)

K. A. Williams, M. G. Thompson, and I. H. White, "Long-wavelength monolithic mode-locked diode lasers," New J. Phys. 6, 179 (2004).
[CrossRef]

Opt. Express (1)

Opt. Rev. (1)

T. Shimizu, X. L. Wang, and H. Yokoyama, "Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers," Opt. Rev. 2, 401-403 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

M. Yousefi, Y. Barbarin, S. Beri, E. A. J. M. Bente, M. K. Smit, R. Notzel, and D. Lenstra, "New role for nonlinear dynamics and chaos in integrated semiconductor laser technology," Phys. Rev. Lett. 98, 044101 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Yvind, D. Larsson, L. J. Christiansen, L. K. Oxenlowe, J. Mork, J. M. Hvam, and J. Hanberg, "Design and evaluation of mode-locked semiconductor lasers for low noise and high stability," Proc. SPIE 5825, 37-48 (2005).
[CrossRef]

Proceedings of the IEEE (1)

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proceedings of the IEEE 88, 728-749 (2000).

Other (4)

P. Blood, H. Pask, I. Sandall, and H. Summers, "Recombination in quantum dot ensembles," Proc. SPIE 64850J, Novel in-Plane Semiconductor Lasers VI 6485, (2007).

P. Vasilev, Ultrafast diode lasers Fundamentals and applications, (Artech House, Boston, 1995), Chap. 4.

L. Zhang, L. Cheng, A. L. Gray, S. Luong, J. Nagyvary, F. Nabulsi, L. Olona, K. Su, T. Tumolillo, R Wang, C. Wiggins, J. Ziko, Z. Zau, P. M. Varangis, H. Su, and L. F. Lester, "5 GHz optical pulses from a monolithic two-section passively mode-locked 1250/1310 nm quantum dot laser for high speed optical interconnects," Optical Fiber Communication Conference. Technical Digest. OFC/NFOEC 3, (2005).
[CrossRef]

A. R. Rae, M. G. Thompson, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, "Harmonic mode-locking of a quantum-dot laser diode," 874-875, (2006) IEEE LEOS Annual Meeting.
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (778 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The layouts and probing scheme of the reconfigurable MLLs designed all within the same multi-section device. The probes biased with reverse voltage, gain currents and transparency current are colored in blue, red and cyan respectively. (a) A0.5G5.0, (b) A0.5P0.5G4.5. (c) A0.5P1.0G4.0. (d) A0.5G4.0P1.0. (e) A0.5G3.0G2.0. The light red indicts a lower current density. (f) G2.0A0.5G3.0, the asymmetrical configuration for higher order harmonic excitation (7th harmonic in this example).

Fig. 2.
Fig. 2.

(a). The measured net modal gain under CW pump and absorption spectra of the quantum dot active region. (b) The net modal gain at the wavelength of 1216nm from (a). The transparency current density is 1.5mA/section as shown with the arrow. The steady-state gain g0 of the configuration A0.5G5.0 is 4.2 cm-1 and the corresponding dg/dJ is 5.1×10-3 cm/A (point A). The g0 of the configuration A0.5P0.5G4.5 is 5.2cm-1 and the corresponding dg/dJ is 2.7×10-3 cm/A (point B). With a 1-mm passive waveguide section, the A0.5P1.0G4.0 configuration has a g0 of 5.8 cm-1 (point C) and a small dg/dJ of 0.75×10-3 cm/A. The A0.5G4.0P1.0 configuration has a near saturated g0 of 5.85 cm-1 (point D) and the smallest dg/dJ of 0.6×10-3 cm/A.

Fig. 3.
Fig. 3.

The pulse width (left) and the peak power (right) of the different multi-section QD MLL configurations compared with the A0.5G5.0 configuration. (a) A0.5P0.5G4.5 and A0.5P1.0G4.0 configurations. (b) A0.5G4.5P0.5 and A0.5G4.0P1.0 configurations. (c) A0.5G3.0G2.0 configuration.

Fig. 4.
Fig. 4.

Stabilty maps of the optical pulse width (left) and peak power (right) vs. gain current and absorber voltage for the GAG configurations. (a) The fundamental harmonic mode-locking. Section 11 was reverse biased as the absorber. (b) The 2nd harmonic mode-locking. The section 6 was reverse biased as the absorber. (c) The 3nd harmonic mode-locking. The section 8 was reverse biased as the absorber. An extra-broad operation range with pulse width below 10 ps was obtained due to symmetric pulse collision.

Fig. 5.
Fig. 5.

(778 KB) Movie showing the absorber location and the corresponding mode-locked pulse shape [Media 1]

Fig. 6.
Fig. 6.

(a). The pulse shape of the G3.0A0.5G2.0 configuration with a gain current density of 857 A/cm2 and a reverse bias of 1V. The absorber is positioned at site 5, corresponding to 7th harmonic mode locking. The pulse width is 6 ps and the peak pulsed power is 70 mW. (b) The pulse shape of the incomplete mode-locking at 115 GHz with the absorber at section 9 and biased at 0 V. The gain current is 120 mA.

Tables (2)

Tables Icon

Table 1. Pulse width and peak power improvements in the APG and AGP configurations.

Tables Icon

Table 2. Harmonic mode-locking repetition rates and TBP achieved with the absorber placed at different positions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s = E sat , g E sat , abs = hνA G g hνA G a = G a G g > 1
s = 1 n tr 2 D Γ G g = 2 n QD Γ G g
( 1 g th g 0 ) > ( G g G a ) 2 = ( 1 s ) 2
G g S 0 1 τ g , G a S 0 1 τ a
n = 1 1 2 1 N m ( N + 1 ) 2

Metrics