Abstract

We propose to employ the technique of femtosecond pulse shaping for improving the performance of the recently suggested method of complete characterization of molecular vibrations, in which both the amplitude and phase of the laser induced vibrational coherence are detected with high resolution. The amplitude-phase information is retrieved from the cross-correlation frequency resolved optical gating of Raman modes. By creating rich interference pattern in the measured two-dimensional spectrogram of coherent anti-Stokes Raman scattering we enhance the accuracy of the retrieved spectral and temporal response and increase the robustness of the method against noise.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, Oxford, 1981).
  2. W. Kiefer, "Active Raman spectroscopy: high resolution molecular spectroscopical methods," J. Mol. Struct. 59, 305-319 (1980).
    [CrossRef]
  3. M. D. Duncan, J. Reintjes, and T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7, 350-352 (1982)
    [CrossRef] [PubMed]
  4. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  5. N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  6. W. Kiefer, ed., J. Raman Spectrosc. 31, (1-2) (2000). (special issue).
  7. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, "Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra," J. Chem. Phys. 125, 044502 1-8 (2006).
    [CrossRef]
  8. D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787-5789 (2004).
    [CrossRef]
  9. S.-H. Lim, A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev. A 72, 041803 1-4 (2005).
    [CrossRef]
  10. X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, "Complete characterization of molecular vibration using frequency resolved gating," J. Chem. Phys. 126, 091102 1-5 (2007).
    [CrossRef] [PubMed]
  11. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002), Chap. 8.
  12. A. M. Weiner, "Femtosecond optical pulse shaping and processing," Prog. Quantum Electron. 19, 161-237 (1995).
    [CrossRef]
  13. D. Oron, N. Dudovich, and Y. Silberberg," Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy," Phys. Rev. Lett. 90, 213902 1-4 (2003).
    [CrossRef] [PubMed]
  14. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, "Fourier-transform coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 480-482 (2006).
    [CrossRef] [PubMed]

2006

2004

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787-5789 (2004).
[CrossRef]

2002

N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

1995

A. M. Weiner, "Femtosecond optical pulse shaping and processing," Prog. Quantum Electron. 19, 161-237 (1995).
[CrossRef]

1982

1980

W. Kiefer, "Active Raman spectroscopy: high resolution molecular spectroscopical methods," J. Mol. Struct. 59, 305-319 (1980).
[CrossRef]

Alexandrou, A.

Beaurepaire, E.

Boppart, S. A.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787-5789 (2004).
[CrossRef]

Bredfeldt, J. S.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787-5789 (2004).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Duncan, M. D.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Joffre, M.

Kiefer, W.

W. Kiefer, "Active Raman spectroscopy: high resolution molecular spectroscopical methods," J. Mol. Struct. 59, 305-319 (1980).
[CrossRef]

Manuccia, T. J.

Marks, D. L.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787-5789 (2004).
[CrossRef]

Ogilvie, J. P.

Oron, D.

N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Reintjes, J.

Silberberg, Y.

N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Vinegoni, C.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787-5789 (2004).
[CrossRef]

Weiner, A. M.

A. M. Weiner, "Femtosecond optical pulse shaping and processing," Prog. Quantum Electron. 19, 161-237 (1995).
[CrossRef]

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Appl. Phys. Lett.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787-5789 (2004).
[CrossRef]

J. Mol. Struct.

W. Kiefer, "Active Raman spectroscopy: high resolution molecular spectroscopical methods," J. Mol. Struct. 59, 305-319 (1980).
[CrossRef]

Nature

N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Prog. Quantum Electron.

A. M. Weiner, "Femtosecond optical pulse shaping and processing," Prog. Quantum Electron. 19, 161-237 (1995).
[CrossRef]

Other

D. Oron, N. Dudovich, and Y. Silberberg," Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy," Phys. Rev. Lett. 90, 213902 1-4 (2003).
[CrossRef] [PubMed]

G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, Oxford, 1981).

W. Kiefer, ed., J. Raman Spectrosc. 31, (1-2) (2000). (special issue).

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, "Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra," J. Chem. Phys. 125, 044502 1-8 (2006).
[CrossRef]

S.-H. Lim, A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev. A 72, 041803 1-4 (2005).
[CrossRef]

X. G. Xu, S. O. Konorov, S. Zhdanovich, J. W. Hepburn, and V. Milner, "Complete characterization of molecular vibration using frequency resolved gating," J. Chem. Phys. 126, 091102 1-5 (2007).
[CrossRef] [PubMed]

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). - Deviation of the retrieved spectra from the model Raman spectra as a function of the noise level in the two-dimensional spectrogram for various spectral shapes of the probe pulse: transform limited pulse (oe-15-12-7564-i001), π-step shaping (oe-15-12-7564-i002), sequence of two transform-limited pulses with decreasing amplitude (oe-15-12-7564-i003), sequence of two transform-limited pulses with increasing amplitude (oe-15-12-7564-i004), π-step shaping of the two-pulse sequence with increasing amplitude (oe-15-12-7564-i005). Insets to (a): illustrative example of the CARS spectra shifted in respect to each other (black and red lines) after being obtained with a broadband transform-limited probe pulse (I) and a broadband shaped probe pulse (II). (b) - model Raman spectrum with three Lorentzian lines showing the amplitude (black line) and phase (blue line) of the vibrational response A(Ω). (c) - retrieved result for the π-step shaping of the two-pulse probe sequence with increasing amplitude at 8% noise level, (d) - same result for a transform-limited pulse.

Fig. 2.
Fig. 2.

Experimental setup for XFROG CARS with the spectrally shaped probe pulses.

Fig. 3
Fig. 3

Measured two-dimensional CARS spectrograms Ias (ω, τ) using (a) a transform-limited probe pulse, (b) π-step shaping of the probe pulse, (c) sinusoidal phase modulation of the probe pulse, (d) combination of the sinusoidal and π-step modulations of the probe pulse. See text for the detailed description of the interference fringes marked by white circles.

Fig. 4.
Fig. 4.

XFROG retrieval of the Raman spectrum of toluene (amplitude - red line, phase - blue line), obtained with (a) a transform-limited probe pulse, and (b) a combination of the π-step and sinusoidal phase modulation of the probe pulse. Thin black line corresponds to the reference spectrum of spontaneous Raman scattering.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ( Ω ) = ( n C n Ω Ω n i Γ n + C N R ) E p ( ω ) E s ( ω Ω ) d ω ,
P a s ( 3 ) ( ω ) A ( Ω ) E p r ( ω Ω ) d Ω
G ( k ) = 1 N 2 i , j = 1 N I a s ( ω i , τ j ) μ I ˜ a s ( k ) ( ω i , τ j ) 2
E ( t ) = E 0 ( t ) C e i Ω t γ t .
G E ( τ ) = dtE ( t ) E * ( t τ ) = G 0 ( τ ) e i Ω τ ,
I ( ω ) = d τ e i ω τ G 0 ( τ ) e i Ω τ = I 0 ( ω Ω ) ,
E r s p = i = 1 K E a s ( ω i ) E ˜ a s ( k ) ( ω i ) ,

Metrics