Abstract

Compact silicon-on-insulator (SOI) waveguide thermo-optically tunable Fabry-Perot microcavities with silicon/air Bragg mirrors are demonstrated. Quality factors of Q=4,584 are measured with finesse F=82. Tuning is achieved by flowing current directly through the silicon cavity resulting in efficient thermo-optic tuning over 2 nm for less than 50 mW applied electrical power. The high-Q cavities enable fast switching (1.9 μs rise time) at low drive power (<10 mW). By overdriving the device, rise times of 640 ns are obtained. Various device improvements are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 μm in silicon etalon," Electron. Lett. 28, 83-85 (1992).
    [CrossRef]
  2. R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum. Electron. QE-23, 123-129 (1987).
    [CrossRef]
  3. R. L. Espinola, M.-C. Tsai, JamesT. Yardley, and R. M. Osgood, "Fast and low-power thermo optic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
    [CrossRef]
  4. Y. Li, J. Yu, and S. Chen, "Rearrangeable nonblocking SOI waveguide thermo optic 4×4 switch matrix with low insertion loss and fast response," IEEE Photon. Technol. Lett. 17, 1641-1643 (2005).
    [CrossRef]
  5. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermo optic switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
    [CrossRef]
  6. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
    [CrossRef]
  7. I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermo optical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
    [CrossRef]
  8. C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, "Compact silicon tunable Fabry-Pérot resonator with low power consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
    [CrossRef]
  9. H. M. Chong, and R. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
    [CrossRef]
  10. M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio sub-micron silicon trenches," J. Vac. Sci. Technol. B 25, 21-28 (2007).
    [CrossRef]
  11. M. W. Pruessner, ToddH. Stievater, and William S. Rabinovich, "Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors," Opt. Lett. 32, 533-535 (2007).
    [CrossRef] [PubMed]
  12. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, "Tunable Fabry-Perot waveguide microcavities with high index contrast mirrors, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2007), paper CThP3.
  13. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes," Opt. Express 15, 3140-3148 (2007).
    [CrossRef] [PubMed]
  14. M. Tinker and J. -B. Lee, "Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency," Opt. Express 13, 7174-7188 (2005).
    [CrossRef] [PubMed]

2007 (3)

2006 (1)

I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermo optical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

2005 (2)

M. Tinker and J. -B. Lee, "Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency," Opt. Express 13, 7174-7188 (2005).
[CrossRef] [PubMed]

Y. Li, J. Yu, and S. Chen, "Rearrangeable nonblocking SOI waveguide thermo optic 4×4 switch matrix with low insertion loss and fast response," IEEE Photon. Technol. Lett. 17, 1641-1643 (2005).
[CrossRef]

2004 (4)

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermo optic switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, "Compact silicon tunable Fabry-Pérot resonator with low power consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

H. M. Chong, and R. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

2003 (1)

R. L. Espinola, M.-C. Tsai, JamesT. Yardley, and R. M. Osgood, "Fast and low-power thermo optic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

1992 (1)

G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 μm in silicon etalon," Electron. Lett. 28, 83-85 (1992).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum. Electron. QE-23, 123-129 (1987).
[CrossRef]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermo optic switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

Almeida, V. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, "Compact silicon tunable Fabry-Pérot resonator with low power consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermo optical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

Baldwin, J. W.

M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio sub-micron silicon trenches," J. Vac. Sci. Technol. B 25, 21-28 (2007).
[CrossRef]

Barrios, C. A.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, "Compact silicon tunable Fabry-Pérot resonator with low power consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum. Electron. QE-23, 123-129 (1987).
[CrossRef]

Chen, S.

Y. Li, J. Yu, and S. Chen, "Rearrangeable nonblocking SOI waveguide thermo optic 4×4 switch matrix with low insertion loss and fast response," IEEE Photon. Technol. Lett. 17, 1641-1643 (2005).
[CrossRef]

Chong, H. M.

H. M. Chong, and R. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

Cocorullo, G.

G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 μm in silicon etalon," Electron. Lett. 28, 83-85 (1992).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermo optical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

De La Rue, R.

H. M. Chong, and R. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

Espinola, R. L.

R. L. Espinola, M.-C. Tsai, JamesT. Yardley, and R. M. Osgood, "Fast and low-power thermo optic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

Harjanne, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermo optic switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermo optic switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

James, M.-C.

R. L. Espinola, M.-C. Tsai, JamesT. Yardley, and R. M. Osgood, "Fast and low-power thermo optic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermo optic switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermo optical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

Lee, J. -B.

Li, Y.

Y. Li, J. Yu, and S. Chen, "Rearrangeable nonblocking SOI waveguide thermo optic 4×4 switch matrix with low insertion loss and fast response," IEEE Photon. Technol. Lett. 17, 1641-1643 (2005).
[CrossRef]

Lipson, M.

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes," Opt. Express 15, 3140-3148 (2007).
[CrossRef] [PubMed]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, "Compact silicon tunable Fabry-Pérot resonator with low power consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

Manipatruni, S.

Panepucci, R. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, "Compact silicon tunable Fabry-Pérot resonator with low power consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Park, D.

M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio sub-micron silicon trenches," J. Vac. Sci. Technol. B 25, 21-28 (2007).
[CrossRef]

Pruessner, M. W.

M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio sub-micron silicon trenches," J. Vac. Sci. Technol. B 25, 21-28 (2007).
[CrossRef]

M. W. Pruessner, ToddH. Stievater, and William S. Rabinovich, "Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors," Opt. Lett. 32, 533-535 (2007).
[CrossRef] [PubMed]

Rabinovich, W. S.

M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio sub-micron silicon trenches," J. Vac. Sci. Technol. B 25, 21-28 (2007).
[CrossRef]

Rendina, I.

G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 μm in silicon etalon," Electron. Lett. 28, 83-85 (1992).
[CrossRef]

Schmidt, B.

Schmidt, B. S.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, "Compact silicon tunable Fabry-Pérot resonator with low power consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Shakya, J.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum. Electron. QE-23, 123-129 (1987).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

Stievater, T. H.

M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio sub-micron silicon trenches," J. Vac. Sci. Technol. B 25, 21-28 (2007).
[CrossRef]

Tinker, M.

Todd, M. W.

Tsai, M.-C.

R. L. Espinola, M.-C. Tsai, JamesT. Yardley, and R. M. Osgood, "Fast and low-power thermo optic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

Xu, Q.

Yu, J.

Y. Li, J. Yu, and S. Chen, "Rearrangeable nonblocking SOI waveguide thermo optic 4×4 switch matrix with low insertion loss and fast response," IEEE Photon. Technol. Lett. 17, 1641-1643 (2005).
[CrossRef]

Electron. Lett. (1)

G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 μm in silicon etalon," Electron. Lett. 28, 83-85 (1992).
[CrossRef]

IEEE J. Quantum. Electron. (1)

R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum. Electron. QE-23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

R. L. Espinola, M.-C. Tsai, JamesT. Yardley, and R. M. Osgood, "Fast and low-power thermo optic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

Y. Li, J. Yu, and S. Chen, "Rearrangeable nonblocking SOI waveguide thermo optic 4×4 switch matrix with low insertion loss and fast response," IEEE Photon. Technol. Lett. 17, 1641-1643 (2005).
[CrossRef]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermo optic switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermo optical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, "Compact silicon tunable Fabry-Pérot resonator with low power consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

H. M. Chong, and R. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. W. Pruessner, W. S. Rabinovich, T. H. Stievater, D. Park and J. W. Baldwin, "Cryogenic etch process development for profile control of high aspect-ratio sub-micron silicon trenches," J. Vac. Sci. Technol. B 25, 21-28 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, "Tunable Fabry-Perot waveguide microcavities with high index contrast mirrors, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2007), paper CThP3.

Supplementary Material (2)

» Media 1: MOV (496 KB)     
» Media 2: MOV (4896 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Fabricated SOI waveguide Fabry-Perot cavity, (b) measured resonance spectrum and Q-factor for a LC =12 μm long cavity.

Fig. 2.
Fig. 2.

(497 kB) Movie of infrared imaging of an optical cavity as the wavelength of light propagating through the rib waveguide is tuned: (a) on-resonance at λ=λ0=1614.5 nm (Q≈4,600) [Media 1], (b) off-resonance at λ=1615.5 nm. [Media 2]

Fig. 3.
Fig. 3.

(a). Measured tuning spectra with Lorentzian curve fit, (b) extracted wavelength shift and refractive index change vs. applied electrical power.

Fig. 4.
Fig. 4.

(a). Measured resonances (λ0=1515.15 nm and λ0=1604.32 nm) with location of probes used in attenuation and switching measurements, b) attenuation vs. electrical power for the two resonances, where probe 1=1604.32 nm (Q=4,584) and probe 1=1575.73 nm (Q=2,626).

Fig. 5.
Fig. 5.

Switching measurement: (a) rise time, (b) fall time (probe 1 and probe 2). “Rise” (“fall”) refers to the optical response to the rising (falling) edge of the electrical signal. Lines: calculation, symbols: experiment.

Fig. 6.
Fig. 6.

Effect of overdriving on switching speed: a) rise time, b) fall time. Lines: calculation, symbols: experiment. Note the different time scales.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = Δ T ( λ 0 n C ) ( Δ n Δ T ) ,
Δ T ( t ) = T 0 ( 1 e t τ ) .
τ = ρ S i c S i W C 2 κ S i π 2 ,
P 0 ( Δ T ) = P 0 [ 1 + ( λ Probe λ 0 ( Δ T ) FWHM 2 ) 2 ] ,

Metrics